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Abstract The stability of a network has been widely studied as an impor-
tant indicator of network status, e.g., reliability and activity. A popular model
for measuring the (structural) stability of a network is k-core, the maximal in-
duced subgraph in which every vertex has at least k neighbors in the subgraph.
As the size of k-core well estimates the stability of a network, the edge k-core
problem is studied to enhance network stability: given a graph G, an integer
k and a budget b, add b edges to non-adjacent vertex pairs in G such that the
number of vertices in the k-core is maximized. The state-of-the-art solution is a
greedy algorithm (named EKC) by finding a promising vertex pair at each iter-
ation, while the algorithm is still not efficient enough on large graphs. In this
paper, we propose a novel vertex-oriented heuristic algorithm (named VEK),
with a well-designed scoring function to guide the search order. Effective opti-
mization techniques are proposed to prune unpromising candidates and reuse
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the intermediate results. The experiments on 9 real-life datasets demonstrate
the runtime of our proposed VEK is faster than the state-of-the-art algorithm
EKC by 1-3 orders of magnitude.

Keywords Graph Processing · Social Network · K-core · Network Editing

1 Introduction

Graph is a ubiquitous structure for modeling networks in various areas includ-
ing social networks [24, 40, 41, 43], P2P networks [7], biological networks [1],
web networks [39], etc. In a graph, each vertex represents an entity, and each
edge represents the relationship between two entities. To recognize groups of
well-connected vertices, a variety of cohesive subgraph models are proposed
such as clique [4], k-core [28], k-truss [10], and k-ecc [5]. The model of k-core is
well-studied for its elegant structure and efficient algorithms to compute [31].
It is defined as a maximal subgraph in which every vertex has at least k neigh-
bors (adjacent vertices) in the subgraph. There are various applications based
on the model of k-core such as community discovery [24], network engagement
analysis [22], finding influential spreaders [17], social contagion [34], finding
molecular complexes [1], etc.

Assume each entity incurs a cost (e.g., k) to remain engaged in a network
but receives a benefit proportional to (e.g., equal to) the number of engaged
neighbors (adjacent vertices), the k-core corresponds to the natural equilib-
rium of this engagement model [3]. Thus, the size (the number of vertices)
of k-core in a network well estimates the (structural) stability of this net-
work. In order to improve the stability of a network, current studies focus on
enlarging the size of k-core such that the vertices in the network are better
connected [42]. Considering the linking of non-adjacent vertices, the edge k-
core problem is studied recently [46]: given a graph G, an integer k and a
budget b, add b edges to non-adjacent vertex pairs in G such that the size of
k-core is maximized.

Example 1 Consider a graph G in Figure 1(a), the coreness of each vertex is
marked with a value. The whole graph G forms a 1-core because every vertex
has at least one neighbor in G, and the subgraph induced by vertices v1, v2, v3
and v4 is a 3-core. Assume that k = 3 and b = 2, the edge k-core problem
aims to maximize the 3-core by adding two new edges into graph G. One of the
optimal results is to add (v5, v9) and (v7, v8). Figure 1(b) depicts the modified
graph G′. By adding only two edges, we can get a larger 3-core induced by the
vertices in G except v10 and v11.

Applications. As a fundamental problem, the edge k-core can be used in
many applications, e.g., connection construction in telecom networks, link rec-
ommendation for a group of webs, etc. Some examples are as follows.

– Peer-to-Peer (P2P) Networks. For any machine (vertex) to steadily benefit
from a P2P network, they should be connected to at least a certain number
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Fig. 1 An example of Edge k-core problem. Here, k = 3 and b = 2. By adding two new edges
(v5, v9) and (v7, v8), the new 3-core is maximized with five more vertices {v5, v6, v7, v8, v9}.

(e.g., k) of other machines for data exchange. The edge k-core problem can
figure out which connections (edges) shall be established so that many de-
vices can successfully retrieve the resources from others and share the data
with others [7]. Besides, in mobile P2P network, the edge k-core problem
may also benefit the users getting resources from surrounding users instead
of accessing the central cloud for low-latency connection [45].

– Social Networks. In current online social platforms, there are various user
groups based on different themes, e.g., for organizing a hiking or an online
game. To improve the engagement of users in a group, it is critical to
promote the social connections of group members. The edge k-core problem
can be used to recommend key connections such that user engagement of
a group is largely improved.

– Online Game. In multiplayer games such as “Death Stranding”, users share
resources based on social connections. Due to the importance of connec-
tion in the game experience, every player must establish connections with
enough players, i.e., a threshold of k players. In this regard, the edge k-core
can be used to find key connections and enhance the player experience.
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Challenges. The main challenge of edge k-core problem stems from the huge
number of candidate edges (non-adjacent vertex pairs), because the real-life
networks are usually quite sparse. Although the k-core can be computed in
O(m) time by recursively removing the vertices with degree less than k, a
straightforward exact solution has to exhaustively compute the size of k-core
for every possible candidate edge set with size b. It is cost-prohibitive even if b
is very small. From the theoretical side [46], the edge k-core problem is proven
to be NP-hard when k ≥ 3. The problem is even hard to have an approximate
solution, as it cannot be approximated in polynomial time within a ratio of
(1− 1/e+ ε) for k ≥ 3 and any ε > 0, unless P = NP.

The state-of-the-art algorithm (named EKC) for the edge k-core problem
is proposed in [46]. In each of the b iterations, EKC greedily finds a best pair
of vertices such that their connection leads to the largest k-core for current
iteration. The result quality (the size of k-core with added edges) of the greedy
solution (EKC) is much better than other heuristics, as evaluated in [46]. Al-
though many unpromising candidates are pruned by the optimizations in EKC,
the remaining candidate edges are still too many to enable an efficient solution
on large graphs. For a graph with about 2 million edges, EKC costs more than
1000 seconds on a commercial machine when k = 20 and b = 5, as reported
in [46]. Consequently, it is crucial to carefully design a novel heuristic with
much less time cost while the result quality is basically not sacrificed.

Our Solution. As the number of vertices is much fewer than the number of
edges even for sparse graphs, a vertex-oriented approach can be much more
efficient than the greedy EKC. That is, we consider to find the results (the edges
to be inserted) based on the idea of preserving outside vertices (through edge
additions) in k-core. We first precisely locate the candidate vertices outside of
k-core which are worthwhile to be preserved (i.e., anchored). A well-designed
scoring function is proposed to select most promising vertices such that the
k-core is enlarged by a few new edges. In order to further reduce the addition
cost (the number of edges need to be added for vertex anchoring), we design a
budget rebate strategy to adjust the added edges incident to different anchored
vertices. The k-core computation with added edges in [46] is improved by using
better data structure. We also introduce an optimization to reuse intermediate
results. Moreover, the VEK algorithm runs in O(b ·n ·m) time, which is superior
to the state-of-the-art method EKC [46]. As verified in our experiments, our
proposed VEK is much faster than EKC while their result qualities are similar.

Contributions. Our main contributions in this paper are as follows:

– We analyze the limitations of the state-of-the-art algorithm EKC for the
edge k-core problem, and propose a novel vertex-oriented approach VEK to
achieve better performance.

– Several optimization techniques are proposed to improve the result quality
of VEK and the efficiency, including a well-designed scoring function for
vertex selection, a budget rebate strategy, a result-reusing method, etc.
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Table 1 Summary of Notations

Notation Definition
G an unweighted and undirected graph
u, v; e, (u, v) a vertex in G; an edge in G
m; n the number of edges in G; the number of vertices in G
N(u,G) the set of adjacent vertices (neighbors) of u in G
deg(u,G) the number of adjacent vertices of u in G
S a subgraph of G
V (S); E(S) the vertex set of S; the edge set of S
cn(u) the coreness of the vertex u
Ck(G); Hk(G) the k-core of G; the k-shell of G
k; b the degree constraint; the anchor budget
EA a set of anchor edges
GA the graph G + EA

F(EA) the followers of the anchor edge set EA in G
L the onion layers of G [42]

– Our experiments on 9 real datasets demonstrate our proposed VEK is faster
than the state-of-the-art EKC by 1-3 orders of magnitude, and the result
qualities of them (the sizes of k-core with b inserted edges) are similar.

Roadmap. The rest of the paper is organized as follows. Section 2 formally
defines the problem, and introduces the existing solution. We then propose
our VEK algorithm in Section 3. The experiments are conducted in Section 4.
Section 5 surveys the related works. Finally, Section 6 concludes the paper.

2 Preliminaries

2.1 Problem Definition

Let G = (V,E) be an undirected graph, where V and E are the set of vertices
and edges, respectively. We denote n = |V |, m = |E| and assume m > n.
Given a subgraph S, the neighbor set of u is denoted by N(u, S). The degree
of u in S, i.e., |N(u, S)|, is denoted by deg(u, S). We may omit the target
graph in notations when the context is clear, e.g., we use deg(u) instead of
deg(u,G). Table 1 summarizes the notations in this paper.

The k-core of a graph is the maximal subgraph where every vertex has at
least k neighbors in the subgraph. We use Ck(G) (or Ck) to denote the k-core
of the original graph G.

Definition 1 (k-Core) Given a graph G, a subgraph S is the k-core of G,
denoted by Ck, if (i) deg(u, S) ≥ k for every vertex u ∈ S; and (ii) S is
maximal, i.e., any supergraph S′ ⊃ S is not a k-core.

The k-core can be obtained by recursively removing every vertex with
degree less than k in the graph, with a time complexity of O(m) [2]. The
coreness of a vertex u, denoted by cn(u), is the largest k such that u is in the
k-core, i.e., maxk:u∈Ck

{k}. We use Hk to denote the k-shell of G, which is the
set of vertices with coreness equals to k, i.e., Hk = {u | cn(u) = k}.
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If we add an edge between a pair of vertices which are not adjacent, the k-
core of the graph may be enlarged, which is named the edge k-core. The added
new edge is called an an anchor or anchor edge. The set of added edges, i.e.,
the anchor set, is denoted by EA. We use GA to denote G with EA added, i.e.,
GA = (V,E ∪EA). In this paper, we say anchor, add, or insert an edge inter-
changeably, e.g., an inserted edge is also called an anchored edge. The edges,
which may be inserted into the graph, are called candidate anchor edges.

Definition 2 (Edge k-Core) Given a graph G = (V,E) and a set of anchor
edges EA, the edge k-core, denoted by Ck(GA), is the k-core of GA.

After adding the anchor edges EA, some vertices not in Ck(G) may follow
the anchor edges to join the edge k-core. We use the followers of EA to denote
these vertices.

Definition 3 (Follower Set) Given a graph G = (V,E) and a set of anchor
edges EA, the follower set of EA, denoted by F(EA), is the set of vertices that
are in the edge k-core but not in the k-core, i.e., F(EA) is the vertex set of
Ck(GA)− Ck(G).

The number of followers reflects the importance of the corresponding an-
chor edges. Given a graph G and a set EA, the vertex set of Ck(GA) is same
to the vertex set of Ck(G) ∪ F(EA).

Problem Statement. Given a graph G, a degree constraint k and an edge
budget b, the edge k-core problem aims to find a set EA of b edges in

(
V
2

)
\

E such that the number of followers of EA is maximized, i.e., |F(EA)| is
maximized.

Problem Hardness. Given a set of anchor edges EA, the edge k-core Ck(GA)
can be obtained in O(m) time by computing the k-core of GA. However, it is
challenging to find the optimal EA, due to the large volume of candidate edges.
Chitnis and Talmon [7] show that the edge k-core problem is polynomial-time
solvable for k ≤ 2 and W[1]-hard. They also propose an algorithm for graphs
with bounded tree-width. In [46], the problem is proved to be NP-hard for
k ≥ 3. Besides, the problem cannot be approximated in polynomial time within
a ratio of (1− 1/e+ ε) for k ≥ 3 and any ε > 0, unless P = NP.

2.2 EKC Algorithm: State-of-the-Art

EKC [46] is the state-of-the-art approach for the edge k-core problem on general
graphs, and Algorithm 1 outlines its pseudo-code. EA is the result set of anchor
edges, while Ecand is a set of candidate anchor edges. We use F(e,GA) to
denote the followers of e, after adding it to EA.

Algorithm 1 iteratively finds the anchor edge with the most followers until
EA contains b edges. Line 2-8 selects a new anchor edge in each round. Specif-
ically, we first compute the candidate edges Ecand (Line 3), then we find the
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Algorithm 1: EKC(G, k, b)

Input : G: a graph, k: degree constraint, b: edge budget
Output : EA: a set of anchor edges
EA ← ∅;1

while |EA| < b do2

Ecand ← GetCandidates(GA, k);3

for each e ∈ Ecand do4

F(e,GA)← FindFollower(e,GA);5

Ecand ← PruneCandidates(Ecand);6

EA ← EA ∪ e∗, where e∗ has the highest |F(e∗, GA)| in Line 5;7

return EA8

followers of each candidate edge (Line 5) while pruning the candidate edge set
(Line 6), and finally insert into EA the edge e∗ that incurs the most followers
(Line 7). The time complexity of EKC is O(b · n2 ·m) and it cannot scale to
large graphs.

The techniques in EKC are summarized as follows. GetCandidates(GA, k)
returns the candidate edges Ecand base on the (k − 1)-shell structure and a
onion-layer based pruning, to reduce the size of Ecand. FindFollower(e,GA)
returns the followers incurred by adding e to EA, using an onion-layer based
follower computation optimization proposed in [42]. PruneCandidates(Ecand)
prunes the candidate edge set according to the followers of e. Throughout the
iterations, the algorithm reuses the intermediate results of connected compo-
nents.

3 Vertex-Oriented Solution

In this section, we present our proposed vertex-oriented algorithm VEK. Sec-
tion 3.1 introduces our basic idea of VEK. Section 3.2 prunes the search space
of candidate pivots. Section 3.3 presents a scoring function that can choose a
promising pivot vertex, and Section 3.4 enhances this scoring function by two
edge budget saving strategies. Finally, Section 3.5 combines all the techniques
of VEK together.

3.1 Basic Ideas

Despite adopting several optimization techniques, EKC runs in O(b·n2 ·m) time,
which cannot scale to large graphs. The time cost comes from an enormous set
of candidate edges whose worst-case size is n2. Motivated by this, we develop
a vertex-oriented heuristic that considers the potential of each vertex rather
than that of each edge. We evaluate the potential of a vertex by anchor score
(Section 3.3), which aims to introduce more vertices into the k-core at a lower
cost. In each iteration, we select a pivot with the highest anchor score from the
pruned search space (Section 3.2), and find the anchor edges that can bring the
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pivot into the k-core. These anchor edges are returned as an approximation
solution of the edge k-core problem. Section 3.4 further designs two strategies
that optimize the quality of anchor score.

Definition 4 (Pivot) Given a graph G = (V,E) and a set of anchor edges
EA, the pivot vertex is the vertex with highest anchor score in G′ = (V,E +
EA).

3.2 Candidate Pivot Pruning

By connecting the anchor edges between a pivot and the k-core, we add the
pivot into the edge k-core along with its followers. To select a pivot that brings
in followers and enlarges the edge k-core, we derive the necessary conditions
for a vertex to be the follower of a pivot.

In the following theorem, u is a pivot and EA is an anchor edge set that
(i) bridges u and the k-core EA = {(v, u) | v ∈ Ck}, and (ii) brings u into the
edge k-core u ∈ Ck(GA). We have that u’s follower set F(u) = Ck(GA) \ Ck

is contained in the (k − 1)-shell.

Theorem 1 Given a graph G, a vertex u, and a set of anchor edges EA =
{(v, u) | v ∈ Ck} such that u ∈ Ck(GA), the followers of u are all from the
(k − 1)-shell, i.e., F(u) ⊆ Hk−1.

Proof Proof by contradiction. Assume there is a follower v of u that is not in
the (k−1)-shell. We have cn(v) < k−1, because a follower must have coreness
less than k and cn(v) 6= k − 1 (v 6∈ Hk−1).

According to the definition of k-core, for each x ∈ Ck(GA), we have
deg(x,Ck(GA)) ≥ k.

After removing u and EA from Ck(GA), we have deg(x,Ck(GA)\u) ≥ k−1
for each vertex x ∈ Ck(GA) \u, because all edges in EA are incident to u, and
the degree of x decreases by at most 1. So, Ck(GA) \ u is a (k − 1)-core
according to the definition. We have cn(v) ≥ k−1 since v ∈ Ck(GA)\u, which
contradicts cn(v) < k − 1. �

Let u ∈ V \ Ck be a pivot we select. Theorem 1 states that u can bring in
new followers only if its neighbors are from the (k − 1)-shell. Thus, we select
the candidate pivots from the neighbors of the (k−1)-shell, namely N(Hk−1).

Assume we have already selected EA as anchor edges, the theorem can also
be applied. The candidate pivot set would be N(Hk−1(GA)), by regarding GA

as the original graph in Theorem 1.

3.3 Anchor Score Evaluation

In this section, we introduce anchor score that evaluates the potential of a
vertex to be a pivot. Intuitively, we aim to add more followers using as few
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anchor edges as possible. The anchor score of a vertex u is proportional to the
number of u′s followers |F(u)| (the vertices added to the edge k-core) and in
inverse proportion to the anchor cost of u, i.e., how many anchor edges we
must use.

The anchor cost of a vertex u measures how many anchor edges are needed
to bring u into the edge k-core. The following theorem not only gives the
minimum value for the anchor cost of a pivot u, but also ensures there is
always a set of anchor edges satisfying this lower bound.

Theorem 2 Given a graph G, a vertex u, for a set of anchor edges EA =
{(v, u) | v ∈ Ck} such that u ∈ Ck(GA), the size of EA is at least ϕ(u) =
k−|N(u)∩Ck|−|N(u)∩F(u))| and there is always a EA satisfying |EA| = ϕ(u).

Proof Assume we select u as a pivot. According to the definition of follower,
the followers of u will not leave the edge k-core unless u leaves. Initially, u has
|N(u)∩Ck| edges to the k-core. Then u′s followers contribute |N(u)∩F(u,G)|
degrees to u. If we anchor k−|N(u)∩Ck|−|N(u)∩F(u,G)|more edges between
the k-core and u, we have deg(u,Ck(GA)) = k. We can always construct such
an EA. �

Theorem 2 shows the cost (the number of required anchor edges) of adding
a pivot into the edge k-core. On the other hand, the number of followers
measures the gains of adding a pivot into the edge k-core. The anchor score
φ(u) is defined as the number of followers divided by the anchor cost.

φ(u) =
|F(u)|
ϕ(u)

=
|F(u)|

k − |N(u) ∩ Ck| − |N(u) ∩ F(u)|
A pivot with a higher anchor score can bring in more edges at a lower cost.

Similar to Theorem 1, Theorem 2 can also applied to GA with EA added, by
considering GA as the original graph.

φ(u,GA) =
|F(u,GA)|
ϕ(u,GA)

=
|F(u,GA)|

k − |N(u) ∩ Ck(GA)| − |N(u) ∩ F(u,GA)| (1)

Compute F(u): the Followers of a Vertex. We adopt the onion-layer
based follower computation in [42], which explores candidate followers layer
by layer, with a heap to maintain the traversal order. The heap can be replaced
by multiple queues. When generating a candidate follower, instead of inserting
it into a heap keyed by the layer number, we push it into the queue of the
corresponding layer, so that the maintenance cost decreases from O(log n) to
O(1).

Compute Anchor Cost ϕ(u). We conduct a core decomposition [16] before
each iteration, so that |N(u)∩Ck(GA)| for any vertex u can be pre-computed
in O(m) time. We also maintain a hash table that answers if a vertex pair
is adjacent. After that, |N(u) ∩ F(u,GA))| for a given u can be answered in
O(|F(u,GA)|) time, by traversing the followers of u and check if it is a neighbor
of u.
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Fig. 2 Maximize the Size of the Edge 5-Core. The edges between the 5-core and {v1, v2, v3}
are bold.

3.4 Optimized Anchor Score

In Section 3.3, we select a pivot u with the highest anchor score in each iter-
ation. The scoring function can be further optimized by looking back. Specif-
ically, we can replace or delete some selected anchor edges, such that we use
fewer anchor edges to retain the vertices in the edge k-core. This saves the
edge budget for further pivot selections.

Example 2 (Look-Back Ability) Figure 2 can illustrate the need for look-back
ability. In this example, we seek to maximize the size of the edge 5-core. The
edges between the 5-core and the outside are highlighted in bold. Using the
anchor score in Section 3.3, we first select v1 using 2 anchor edges, then select
v3 with two edge budgets, which results in a follower v2. The total edge budget
is 4. However, we can anchor (v1, v3) and an edge from v3 to the 5-core, to
bring all three vertices into the 5-core. By looking back and removing the
redundant edges, we can save 2 edge budgets in this example.

In the following, we discuss two strategies that optimize the effectiveness
of anchor score. The optimized anchor score uses (i) Budget Return: deletes
redundant anchor edges and return its budget; (ii) Edge Reconnection: re-
connects anchor edges to save budget without losing the vertices in the edge
k-core.

Budget Return (Line 3-7). Assume we bring v into the k-core using anchor
edges EA, and then we want to bring in another pivot u. The followers of u
are F(u,GA). Let C = EA ∩ {(v, v′) | v′ ∈ Ck} and D = N(v) ∩ F(u,GA).

Here, C is a set of selected anchor edges between the original k-core and
v, while D is the set of u’s followers that are adjacent to v. The followers of
u can add |D| degrees to v. On the other hand, the anchor edges in C, which
are previously used to increase the degree of v, can be removed due to u’s
followers. To sum up, we can safely delete min(|C|, |D|) edges in C from the
anchor edge set.

Example 3 (Budget Return) In Figure 2, assume we first (Step.A) anchor pivot
v1 into the 5-core with 2 anchor edges, then (Step.B) bring pivot v2 into the
5-core using two anchor edges, and result in a follower v3. The degree of v1
increase by 1 due to the (v1, v3), so we can return one edge budge that is used
to increse the degree of v1 in Step.A, while all vertices still exist in the k-core.
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Algorithm 2: GetAnchorScore∗(u, VP , GA)

Input : u: a vertex, VP : a set of selected pivots, EA: a set of anchor edges
Output : Score: the optimized anchor score of u,

Enext: the set of anchor edges after selecting u as a pivot
Enext ← EA;1

Cost← k − |N(u) ∩ Ck(GA))| − |N(u) ∩ F(u,GA))|; // Section 3.32

for each v ∈ VP do3

C ← Enext ∩ {(v, v′) | v′ ∈ Ck};4

D ← N(v) ∩ F(u,GA);5

if |C| > 0 then6

Enext ← Enext \ {min(|C|, |D|) edges in C};7

for each v ∈ VP \N(u) do8

C ← Enext ∩ {(v, v′) | v′ ∈ Ck};9

if |C| > 0 and Cost > 0 then10

Cost← Cost− 1;11

Enext ← Enext ∪ (u, v) \ {one edge in C};12

Cost← Cost− (|EA| − |Enext|);13

Score←
|F(u,GA)|

Cost
if Cost > 0 else ∞;14

return Score, Enext;15

Edge Reconnection (Line 8-12). Suppose a pivot v has been inserted into
the k-core using anchor edges EA, and then another pivot u is to be selected.
Let C = EA ∩ {(v, v′) | v′ ∈ Ck}, which is the anchor edges between the
original k-core and v. The new pivot u needs ϕ(u) additional degrees to engage
in the edge k-core. Connecting u to the k-core can increase u′s degree by one.
However, connecting (u, v) can contribute to the degree of both v and u, so
that one anchor edge in C can be removed without affecting the edge k-core.

Example 4 (Edge Reconnection) In Figure 2, assume v1 has been inserted in
the edge 5-core, and v1 and v3 is not adjacent. When selecting v3 as a pivot,
we can connect (v1, v3) and remove an anchor edge from v1 to k-core (no edge
budget is used). Then, rather than two edges, we only need to add one edge
from the 5-core to v3 to insert v3 into the edge 5-core.

Algorithm 2 illustrates how to compute the optimized anchor score for
a given vertex u. VP is the set of selected pivot vertices, EA is the set of
anchor edges we select. We use Enext to maintain the set of anchor edges, and
initialize it with EA. Cost is the anchor cost of u, i.e., how many edges we
need to connect between u and the original k-core, while Score is the anchor
score u.

The initial anchor cost of u is computed in Line 2. Line 3-7 apply the
budget return strategy discribed above, where we compute C,D and remove
min(|C|, |D|) redundant edges in C from Enext. Line 8-12 conduct the edge
reconnection strategy. For each selected pivot v that is not adjacent to u,
we use (u, v) to replace an anchor edge e ∈ C. Line 13 decreases Cost by
(|EA| − |Enext|) the number of anchor edges we removed from EA. In Line 14,
Cost is the number of anchor edges to connect between the original k-core and
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Algorithm 3: VEK(G, k, b)

Input : G: a graph, k: degree constraint, b: edge budget
Output : EA: a set of anchor edges
VP ← ∅; EA ← ∅;1

while |EA| < b do2

for each u ∈ N(Hk−1(GA)) do // Section 3.23

Score[u], Enext[u]← GetAnchorScore∗(u, VP , GA); // Algorithm 24

u∗ has the highest Score[u∗] (Line 4) where |Enext[u∗]| ≤ b;5

if u∗ = NULL then break;6

VP ← VP ∪ u∗;7

EA ← Enext[u∗];8

return EA9

u, so Line 14 divides the number of followers by the cost to get the optimized
anchor score. In case Cost ≤ 0, Line 14 sets Score to ∞, because the edge
budget would not decrease after selecting u as a pivot, i.e., we should choose
u anyway. Finally, Line 15 returns the results.

3.5 VEK Algorithm

Algorithm 3 organizes the techniques in the previous sections into our proposed
VEK algorithm, which implements the ideas in Section 3.1. The algorithm keeps
picking a pivot vertex from the pruned candidates (Section 3.2) whose opti-
mized anchor score (Section 3.4) is the highest, until the edge budget is used
up.

VP is the set of pivot vertices we have selected, EA is the set of anchor
edges attached to the pivots. The arrays in Line 4 exactly match the return
value of Algorithm 2, that is, Score[u] stores the optimized anchor score of u,
and Enext[u] stores the set of anchor edges after selecting u as a pivot.

Line 1 initializes the pivot vertex set VP and the anchor edge set EA.
Line 2-8 selects a pivot u∗ and updates EA using the selected pivot, until the
number of anchor edges |EA| reaches the edge budget b. Line 3-5 chooses from
the pruned candidate set (Section 3.2) a pivot u∗ such that (i) the optimized
anchor score Score[u∗] (Section 3.4) is the highest, and (ii) after choosing
u∗, the number of anchor edges |Enext[u

∗]| are within the budget b. Line 6
terminates the loop if there is no valid pivot to select. Otherwise, Line 7 adds
u∗ to the pivot set VP , and Line 8 updates EA to Enext which is the set of
anchor edges after selecting u∗ as a pivot. Line 9 returns the result anchor
edges EA.

Reuse Intermediate Results. The intermediate results of Algorithm 3 can
be reused. In each round of Line 3-8, only one vertex u∗ is selected as a pivot.
For a vertex v that is not connected to u∗ in the original graph G, the selected
pivot u∗ will not affect v, so we can reuse the optimized anchor score and the
follower set of v in the next round. By pre-computing the connectivity of the
graph, we can efficiently skip those vertices and reuse the results.
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Table 2 Statistics of Datasets

Dataset Vertices Edges davg kmax

Facebook 4,039 88,234 43.69 115
Enron 36,692 183,831 10.02 43
Brightkite 58,228 214,078 7.35 52
Gowalla 196,591 950,327 9.67 51
DBLP 317,080 1,049,866 6.62 113
Twitter 81,306 1,768,149 33.02 96
Stanford 281,903 2,312,497 14.14 71
YouTube 1,134,890 2,987,624 5.27 51
Flickr 513,969 3,190,452 12.41 309

Algorithm Complexity. We analyze the time and space complexity of VEK.
VEK iteratively introduces a most promising vertex into k-core in each round
until the budget is exhausted. Although two strategies Budget Return and
Edge Reconnection are adopted to maximize the effectiveness of the budget,
the vertex selected by the algorithm has to be linked to at least one addition
edge finally. Considering that the budget is b, VEK runs at most 2b rounds.
In one iteration, VEK evaluates the advanced anchor score for each candidate
pivot. VEK takes O(m) time at most for the evaluation of one candidate pivot.
The size of candidate pivot set |N(Hk−1(GA))| ≤ n. Then VEK can update the
graph in O(1) time. As a result, the overall time complexity is O(b · n · m).
It costs O(m) to store the graph and O(n) space to maintain the candidate
pivot. Anchor score and corresponding anchor edge set also takes O(n) space
to keep in record. Thus, the space complexity of VEK is O(m).

4 Experiment Evaluation

4.1 Experimental Setting

Datasets. Flickr dataset is from Network Repository1, and the others are
from SNAP2. Table 2 shows the statistics of the datasets deployed in the
experiments.

Algorithms. Our proposed algorithm VEK is described in Section 3.5. We com-
pare VEK with existing solutions including EKC and other heuristics as intro-
duced in [46]. The onion layers L in [42] is an auxiliary structure to facilitate
the follower computation and candidate pruning for EKC. Table 3 shows the
summary of algorithms.

Parameters. All programs are implemented in C++. All experiments are per-
formed on Intel Xeon 2.20GHz CPU and Linux system. We vary the param-
eters k and b. The effectiveness is evaluated by the number of the followers
produced. The efficiency is measured by running time.

1 http://networkrepository.com/
2 https://snap.stanford.edu/data/
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Table 3 Summary of Algorithms

Algorithm Description
Rand randomly chooses b anchors (each with at least one follower) from

E′cand = {(u, v) | u ∈ Hk−1, v ∈ Ck−1} \ E(Ck−1)
Degree chooses b anchors from E′cand with largest degrees
Layer chooses b anchors from E′cand at highest onion layers in L
EKC the state-of-the-art algorithm in [46] (Section 2.2)
VEK our proposed vertex-oriented approach (Section 3.5)

0

100

200

300

400

500

600

Facebook

Enron
Brightkite

Gowalla

DBLP
Twitter

Stanford

Youtube

Flickr

A
v
g

. 
#

F
o

llo
w

e
rs

Layer Degree Rand EKC VEK

Fig. 3 Effectiveness of Different Heuristics, k = 10, b = 20

4.2 Effectiveness

Figure 3 compares the number of followers w.r.t. b anchor edges produced by
all the algorithms in Table 3, when k = 10 and b = 20. In Figure 3, Layer or
Degree fail to get any followers in several datasets, because a vertex in higher
onion layer or with a larger degree does not necessarily have a follower. For
Rand, we report the average number of followers for 200 independent tests.
Given the inputs of k and b, the resulting number of followers is fixed for
any of the other four approaches. If we randomly anchor (insert) edges in the
whole graph, it is common to get no follower after 20 random insertions. It is
because the candidate edges with more than 1 follower are quite rare in the
graph, while the number of candidate edges is large. Thus, in Rand, we only
choose the edges from the set E′ where each edge has at least one follower
if inserted. Note that the computation of E′ costs more time than VEK, as it
requires to compute the follower set of each candidate vertex pair (candidate
anchor edge).

Although the majority of the candidate edges does not have any followers,
the state-of-the-art EKC produces many followers in the experiments, which
shows the greedy heuristic is effective. For our proposed VEK, with the help of
promising pivot vertices, we can easily identify a small part of candidate edges
with lots of followers. Thus, though VEK is much faster than EKC as shown in
latter experimental results, the number of followers produced by VEK is similar
to that of EKC. As reported in Figure 3, the margins between the results of VEK
and EKC are very small. In some cases, the followers from VEK can be even more
than that from EKC, e.g., for Enron and Twitter. It is because VEK considers
the addition of edges in a batch manner based on the pivot vertices. Figure 4
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Fig. 5 Running Time on Different Datasets

shows the number of followers for other settings by varying the value of k or
b, the results are similar to that in Figure 3. As EKC focuses on finding a best
anchor edge which is always from (k-1)-core in one iteration, there may be
no single anchor edge with any followers. Thus, the performance of EKC may
degenerate in some settings, e.g., k = 25 and b = 10 on Twitter. However,
as our VEK aims to preserve a good pivot vertex which adds a batch of edges
at the same time, the performance of VEK is more robust than EKC. Besides,
since VEK is always faster than EKC by at least 1 order of magnitude, it is often
worthwhile to use VEK instead of EKC in real applications.

4.3 Efficiency

Figure 5 reports the time cost of EKC and VEK on all the datasets with k = 10
and b = 20. If the running time exceeds 48 hours, we set it to timeout. Figure 5
shows that the time cost of VEK is smaller than EKC by 3 orders of magnitude
on most datasets. Our VEK can return in 100 seconds on most settings while
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Fig. 6 Effect of k and b

the time cost of EKC is larger than 10000 seconds on many settings. We observe
that the runtime among different datasets is largely influenced by the size of
the dataset, the average degree, and the onion layer structures [42], while none
of the characteristics is deterministic on time cost. The outperformance of VEK
is more obvious when the dataset is larger, because the number of candidate
edges in EKC are much larger than candidate pivots used in VEK on larger
real-life datasets.

Figure 6 shows the impact of different k and b on the two algorithms. Fig-
ure 6(a) reports that the runtime decreases with a larger input of k. This is
because the number of candidate edges becomes fewer as k increases. When
k is relatively large, there is no anchor in one iteration with any follower for
EKC, then the set of candidate edges for EKC is empty. In this case, the mar-
gin between EKC and VEK becomes smaller because EKC is basically a random
method. Figure 6(b) reports that the runtime is basically proportional to the
input of b for both EKC and VEK. The outperformance of VEK against EKC is
clear on every setting. As the result quality (the number of produced follow-
ers) of VEK is similar to EKC, our proposed VEK becomes the state-of-the-art
solution for the edge k-core problem.

5 Related Work

The concept of k-core and the computing algorithm are first introduced in
[28,31]. Core decomposition finds the k-core for any k value, which costs O(m)
time by recursively removing each vertex with degree less than k [2]. The com-
putation of k-core is also studied in other environments, including multi-core
platform [11, 14], distributed environment [29], and I/O efficient configura-
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tion [38] where the space complexity is bounded by O(n). [23] studies the core
decomposition in multilayer graphs, and an in-depth discussion of core decom-
position is conducted by [25]. The hierarchical core maintenance on dynamic
graphs is studied by [21]. The best k in core decomposition can be found by [8].

The mode of k-core is widely applied in different areas, e.g., community
discovery [13,36,37], anomaly detection [32], influential spreader identification
[12,26], and user engagement study [3,9,43]. The variants of k-core combine the
degree constraint with auxiliary informations, such as influential community
[20], skyline community [19], and spatial-aware community [13]. Besides k-
core, many other models detect cohesive subgraphs using different structural
property, e.g., k-truss [10,35], clique [4, 6], quasi-clique [30], and k-ecc [5].

As the computation of k-core precisely captures the decaying dynamic of
a network, the size of k-core is often used to evaluate the structural stability
of a network [3, 27, 44]. To improve the stability of a network, some models
are proposed to maximize the k-core through different operations, e.g., the an-
chored k-core by enhancing vertices [3], the collapsed k-core by defending key
vertices [43], and the edge k-core by adding critical edges [7]. Edge addition
methods are also applied in other topics, e.g., modifying graph diameter [33],
enlarging graph bandwidth [18] and anonymizing a set of vertices [15]. As most
of the stability problems are NP-hard, different heuristics are evaluated in ex-
isting studies and the greedy solution is shown to be effective in many datasets,
including the EKC algorithm [46] for the edge k-core problem. However, due to
the huge number of candidates, EKC still cannot efficiently handle large graphs.
Thus, a faster vertex-oriented approach is proposed in this paper.

6 Conclusion

In this paper, we propose a novel vertex-oriented solution for the edge k-core
problem: given a graph G, an integer k, and a budget b, it aims to connect b
non-adjacent vertex pairs s.t. the number of vertices in the k-core is maximized.
Due to the huge number of candidate vertex pairs to connect, the state-of-
the-art algorithm EKC is not efficient enough for real-life large graphs. Our
proposed VEK algorithm iteratively chooses a pivot vertex by a scoring function,
and carefully adds the edges to the pivot s.t. it is preserved in the k-core.
We design a budegt return strategy and an edge re-connection method to
optimize the scoring function and ensure the quality of our pivot selection.
Effective optimization techniques are proposed to prune unpromising pivots
and reuse the intermediate results. Extensive experiments demonstrate that
VEK outperforms EKC in efficiency by 1-3 orders of magnitude while the result
is still of high quality.
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