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Discovering and Maintaining the Best k in Core
Decomposition

Deming Chu, Fan Zhang, Wenjie Zhang, Xuemin Lin, Ying Zhang, Yinglong Xia, and Chenyi Zhang

Abstract—The mode of k-core and its hierarchical decomposition have been applied in many areas, such as sociology, the world wide
web, and biology. Algorithms on related studies often need an input value of parameter k, while there is no existing solution other than
manual selection. In this paper, given a graph and a scoring metric, we aim to find the best value of k such that the score of the k-core
(or k-core set) is the highest. The problem is challenging because there are various community scoring metrics and the computation is
costly on large datasets. With the well-designed vertex ordering, we propose time-and-space-optimal algorithms to compute the best k,
which are applicable to most community metrics. As real-world networks are often fast-evolving, we also design a novel framework to
maintain the best k-core (set) against graph dynamics. We prove the dynamic algorithms are bounded, i.e., the update cost is decided
by the changes of input and output. The proposed algorithms can benefit the solutions to k-core-related problems and their dynamic
counterparts. Extensive experiments are conducted on 10 real-world networks with size up to billion-scale, which validates the
efficiency of our algorithms and the effectiveness of the resulting k-cores.

Index Terms—Cohesive subgraph, Core decomposition, k-core, Dynamic graph, Densest subgraph

✦

1 INTRODUCTION

As a fundamental problem in network analysis, cohesive
subgraph mining is to extract groups of densely connected
vertices. The well-studied model of k-core is defined as
a maximal connected subgraph where every vertex is con-
nected to at least k other vertices in the same subgraph [32],
[43]. We use k-core set to denote the subgraph formed by all
the (connected) k-cores in the graph, for a fixed parameter
k. The hierarchical decomposition by k-core (or core decom-
position) computes the k-core set for every possible k. The
hierarchy of core decomposition builds on the containment
property of k-core sets, that is, the (k+1)-core set is always
a subgraph of the k-core set.

The k-core and its hierarchy have a wide range of ap-
plications [22], such as finding communities in the web [19]
and social networks [20], [47], [62], discovering molecular
complexes in protein interaction networks [3], recognizing
hub-nodes in brain functional networks [7], analyzing the
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structure and functional consequences of the Internet [9],
understanding software systems [57], and predicting struc-
tural collapse in mutualistic ecosystems [35].

The k-core is desired in comparison with other com-
munity detection techniques because its computation only
takes linear time and the constraint on vertex degree is
fundamental in computing the communities. However, it is
hard to specify the value of k because different applications
have different focuses [22]. This motivates our study to find
the best k and maintain the solutions.

Discovering the Best k. Despite the elegant structure of
k-core hierarchy and the various applications, it is still a
common open problem to find the best k-core set or the best
single k-core. To our knowledge, there is no previous work
that studies the best k value for k-core and for other cohesive
subgraph models, e.g. k-truss, k-plex, k-vcc, and k-ecc. The
existing solution can only use a user-defined k, or to decide
k by trivial statistics, e.g., setting k to average vertex degree.
The underlying problem is essentially to ask the quality
of the k-cores, since different k values lead to different k-
cores. In this paper, given a graph and a community scoring
metric, we aim to compute a k value such that the k-core
set has the highest score among all the k-core sets for every
integer k. We also aim to find the best single k-core among
all the k-cores for every integer k.

There is no uniform metric to evaluate the quality of
a subgraph [54]. Different community scoring metrics are
designed for optimizing different network properties [10],
[54]. For example, the clustering coefficient is a goodness
metric for clustering tendency [50], and modularity mea-
sures the quality of a graph partition [36], [37]. To apply
our proposed algorithms to various community metrics and
even new metrics, we extract representative primary values
that can be utilized to calculate most community scores [10].

A basic solution for the problem is to conduct quality



2

𝑘 = 3

𝑘 = 2

𝐺3.1 𝐺3.2

𝑘 = 1

𝐺2

𝐺1

Fig. 1. Hierarchical Core Decomposition

computation on the k-core set for every possible input of k,
which is costly. To efficiently handle billion-scale graphs, we
design a light-weight vertex ordering technique to facilitate
score computation. We compute the score of k-core sets from
the center core of the graph to the margins, with optimal
time and space cost.

Our paradigm can also find the best single k-core when
the connectivity of different k-cores is considered. The score
of every k-core can be retrieved by our algorithms. The k-
core computation module with the best input k can support
applications such as community search and improve algo-
rithm efficiency. Particularly, our algorithm can help solve
k-core related problems, e.g., finding the densest subgraph,
maximum clique, and size-constrained k-core (Section 7.6).

Example 1. Figure 1 illustrates the hierarchy of a network
decomposed by the k-core model, varying k from 1 to 3.
When k = 1, the 1-core (set) G1 is whole graph. When
k = 2, we recursively delete every vertex with a degree
less than 2, resulting in the 2-core (set) G2. When k = 3,
the 3-core set consists of two 3-cores: G3.1 and G3.2.
Suppose the scoring metric is the average degree (twice
the number of edges divided by the number of vertices),
(i) the best k-core set is the 3-core set, as it has the highest
score (average degree) among all the k-core sets, and the
best k is 3; and (ii) the best single k-core is G3.1 as it has
the highest score among all the k-cores with different k.

Maintaining the Best k. Cohesive subgraphs are stud-
ied extensively on dynamic graphs where edges are in-
serted/removed constantly [24], [31], [59], as real-world
graphs can be highly dynamic, e.g, orders are constantly cre-
ated between E-commerce accounts. Thus, we also study the
maintenance of the best k-core (set) against graph dynamics.
The problem is challenging, as an edge insertion/removal
can significantly change the k-cores and its hierarchy ac-
cording to [31], [59], not to mention the scores of k-cores.

A baseline is to maintain the index of our static al-
gorithm, and query the best k-core (set) with the static
algorithms. However, this baseline is sub-optimal, because
updating the index and recomputing the scores with the
index still incurs a high time overhead.

To solve the above issues, we propose a novel framework
for updating the best k-core (set), based on the equations
that capture the effect of graph updates on the scores of
k-cores. The update cost of our algorithms is bounded,
meanwhile, the update and query costs are both largely
reduced compared with the baseline. Our algorithms can
also outperform the SOTA of the k-core related problems on
dynamics graphs, e.g., dynamic densest subgraph [42].

Contributions. In the conference version of this paper [16],
we proposed the time-and-space-optimal algorithms for
discovering the best k (and k-core). In this paper, we sub-
stantially extend the study. In particular, we devise efficient
dynamic algorithms for maintaining the best k (and k-core
set) when the graph is updated frequently.

However, it is non-trivial to design algorithms with
optimal time-and-space complexities and extend this idea to
various metrics, to the case when connectivity is considered,
and to the graphs with frequent updates. Our paper tackles
all these challenges under a unified framework. In summary,
our principal contributions are as follows.

• To our best knowledge, this is the first work to study the
following problems: given a graph G and a community
scoring metric Q, (i) find the best k-core set; and (ii) find
the best single k-core, according to Q.

• We develop algorithms to solve our proposed problems
in worst-case optimal time and space complexities. For
many metrics, our algorithms can compute the score in
O(n) time where n is the number of vertices. The algo-
rithms can be applied to various community metrics.

• For graphs with frequent updates, we propose a novel
framework to maintain the answers to our proposed
problems. Our dynamic algorithms are bounded, i.e.,
the update cost of our algorithms is decided by the
changes of input and output.

• We conduct experiments on 10 real graphs with up to
billions of edges, and show that the k-core (set) with
the resulting k has a better quality than that with user-
defined k or other trivial values. Towards efficiency, our
static algorithms outperform the static baselines by 1-4
orders, while our dynamic algorithms outperform the
dynamic baselines by up to 6 orders. For some k-core
related problems and their dynamic counterparts, our
algorithms can serve as good approximate solutions or
benefit the algorithm design (Section 7.6).

Organization. Section 2 defines preliminary concepts. Sec-
tions 3 and 4 propose the algorithms for finding the best
k and the best single k-core, respectively. Sections 5 and 6
devise the dynamic algorithms for maintaining the best k
and the best single k-core, respectively. Section 7 evaluates
our algorithms. Section 8 reviews the related works and
Section 9 concludes the paper.

2 PRELIMINARIES

We consider an undirected and unweighted simple graph
G = (V,E), with n = |V | vertices and m = |E| edges
(assume m > n). Given a vertex v in a subgraph S,
N(v, S) denotes the neighbor set of v in S, i.e., N(v, S) =
{u | (u, v) ∈ E(S)}. The degree of v in subgraph S, i.e.,
|N(v, S)|, is denoted by d(v, S). We omit the input graph G
in the notations when the context is clear, e.g., we abbreviate
N(v,G) to N(v). Table 1 summarizes the notations.

2.1 Core Decomposition
The model of k-core [32], [43] is defined as follows.
Definition 1 (k-Core). Given a graph G and an integer k,

a subgraph S is a k-core of G, if (i) each vertex v ∈ S
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TABLE 1
Summary of Notations

Notation Definition
G = (V,E) an undirected, unweighted simple graph
n;m the number of vertices/edges in G (m > n)
S a subgraph of G
V (S); E(S) the set of vertices/edges in S
id(v) the unique identification of v in G
N(v);N(v, S) the set of neighbors of v in G / in S
d(v); d(v, S) the degree of v in G / in S
Ck the k-core set of G
c(v) the coreness of v in G, max{k | v ∈ Ck}
kmax the largest k s.t. Ck is not empty
Hk the k-shell of G, {v | c(v) = k}
rank(v) the vertex rank of vertex v
n(S); m(S) the number of vertices/edges in S
b(S) the number of boundary edges in S
∆(S); t(S) the number of triangles/triplets in S

E′ an edge set to insert or remove
V ∗ the set of vertices with coreness changed
∥S∥c the size of the c-hop neighbors of S
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Fig. 2. A 2-core graph in which the 3-cores are circled

has at least k neighbors in S, i.e., d(v, S) ≥ k; (ii) S is
connected; and (iii) S is maximal, i.e., any supergraph of
S is not a k-core except S itself.

Definition 2 (k-Core Set). Given a graph G and an integer
k, the k-core set of G, denoted by Ck, is the subgraph
formed by all the (connected) k-cores in G.

Given k′ ≥ k, the k′-core set is always a subgraph of the
k-core set, i.e., Ck′ ⊆ Ck. This implies that each vertex in a
graph has a unique number of coreness [5].
Definition 3 (Coreness and k-Shell). Given a graph G, the

coreness of a vertex v ∈ G is c(v) = max{k | v ∈ Ck},
i.e., the largest k such that the vertex v is in the k-core.
The k-shell of G is Hk = {v | c(v) = k}, i.e., the set of
vertices with coreness k.

Definition 4 (Core Decomposition). Given a graph G, core
decomposition is to compute the coreness c(v) for every
vertex v ∈ V (G).

The algorithm for core decomposition runs in O(m)
time complexity [5], and it recursively removes the vertex
with the smallest degree in the graph. Besides, kmax (graph
degeneracy) is decided by the input graph G, i.e., it is the
largest k such that the k-core of G is not empty.
Example 2. Figure 2 shows a graph of 12 vertices. The graph

itself is a 2-core. When k = 3, the k-core computation
recursively deletes every vertex with a degree less than
3, i.e., v5, v7, v6 and v8. The 3-core set is the induced
subgraph by the rest vertices. The coreness of v5, v7, v6
and v8 is 2, and the coreness of other vertices is 3. There
are two connected components (3-cores) in the 3-core set,
as circled in the figure.

2.2 Problem Definition
We are the first to propose and study the problems below.
Problem (Discovering the Best k). Given a graph G.

1) discover the k∗-core set Ck∗ such that it has the highest
score among all the k-core sets for every integer k with
0 ≤ k ≤ kmax;

2) discover the single k∗-core S∗ such that it has the
highest score among all the k-cores for every integer
k with 0 ≤ k ≤ kmax.

Problem (Maintaining the Best k). Given a dynamic graph
changed from G to G′.

1) update the best k-core set from Ck∗(G) to Ck∗(G′);
2) update the best k-core from S∗(G) to S∗(G′).

2.3 Community Scoring Metrics
Although there are various community scoring metrics con-
sidering different community properties, most of them are
constructed on the following primary values [54].
Primary Values. Let S be a subgraph to evaluate, we study
the following common primary values.

• n(S): the number of vertices in S, i.e., n(S) = |V (S)|;
• m(S): the number of edges in S, i.e., m(S) = |E(S)|;
• b(S): the number of boundary edges in S, b(S) =
|{(u, v) | (u, v) ∈ E, u ∈ S, v ̸∈ S}|;

• ∆(S): the number of triangles in S;
• t(S): the number of triplets in S, i.e., t(S) =∑

v∈S

(d(v,S)
2

)
, where a triplet is three vertices con-

nected by two edges;

Metrics. Based on the above primary values, some commu-
nity scoring metrics are defined as follows.

• Average Degree: f(S) = 2×m(S)
n(S) is the average degree

of vertices in S;
• Internal Density: f(S) = 2×m(S)

n(S)×(n(S)−1) is the internal
density of vertices in S;

• Cut Ratio: f(S) = 1− b(S)
n(S)×(n−n(S)) is the difference of

1 and the fraction of existing boundary edges over all
the possible ones;

• Conductance: f(S) = 1− b(S)
2×m(S)+b(S) is the difference

of 1 and the proportion of degrees where the vertex
points to the outside;

• Modularity: the modularity for a partition P on G

is f(P ) =
k∑

i=1

(
m(Pi)

m −
(
2×m(Pi)+b(Pi)

2×m

)2
)

, where Pi

is the ith community in the partition [37]. We regard
different (connected) k-cores and the rest nodes as a
partition, and compute the Modularity of this partition.

• Clustering Coefficient: f(S) = 3×∆(S)
t(S) measures the

tendency of vertices to cluster together;
Given a scoring metric, for an integer k, the target sub-

graphs for computing the scores are all the k-cores with the
given k, i.e., the subgraphs in Ck. Note that our algorithms
are not limited to handling the above metrics, i.e., they can
handle any metric formed by the above primary values.

3 FINDING THE BEST K-CORE SET

In this section, we propose the solution to find the best k for
the k-core set, including the baseline in Section 3.1, and the
improved algorithm in later sections.
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3.1 Baseline Algorithm
Given a graph G and a community scoring metric Q, a
baseline solution is to first conduct core decomposition,
order the vertices by coreness to fast retrieve a k-core set,
and then compute the score of every k-core set according to
Q, for every integer k with 0 ≤ k ≤ kmax.

We use a bin sort to order the vertices in G by coreness,
and record every start position of the vertices with the same
coreness, which takes O(n) time. Then, retrieving the vertex
set of a k-core set Ck takes O(|V (Ck)|) time. Let O(qk) be
the time cost to compute the score of Ck given V (Ck), Q
and G. The time complexity of the baseline algorithm is
O

(∑kmax

k=0

(
qk + |V (Ck)|

))
. Although the baseline runs in

polynomial time, it is costly to handle large graphs.

3.2 Vertex Ordering for Optimal Neighbor Query
To compute the best k in optimal time and space cost, we
first introduce the vertex ordering techniques.

We divide the vertices in G into kmax + 1 arrays where
each is associated with a unique coreness value. The arrays
are ordered by the associated coreness to fast locate the
vertices with different coreness.

For every vertex v in G, the neighbor set of v is ordered
by increasing values of vertex rank that is defined as follows.
Definition 5 (Vertex Rank). Given vertices u and v, the rank

of v is higher than u, denoted by rank(v) > rank(u), if
(i) c(v) > c(u); OR (ii) c(v) = c(u) and id(v) > id(u),
where id(v) is the unique identification of v.

For every vertex v, to efficiently retrieve specific parts
of its neighbor set, we also record some position tags
where same is the position of the first u in N(v) such
that c(u) ≥ c(v), plus is the position of the first u in
N(v) such that c(u) > c(v), and high is the position of
the first u in N(v) such that rank(u) > rank(v). Each
of the above tags is set to |N(v)| when there is no such
u ∈ N(v) satisfying the condition. Table 2 summarizes how
to handle the neighbor queries based on the vertex ordering.
Note that our proposed algorithms in the following sections
(implicitly) use the vertex ordering whenever they call the
neighbor queries in Table 2.

Algorithm 1 shows the pseudo-code for vertex ordering.
Lines 1-4 use kmax + 1 bins to sort vertices by rank, where
each bin represents a unique value of coreness. Inspired
by [26], we flatten kmax + 1 bins to sort the edge set: (i)
At Lines 5-8, for every vertex v with ascending vertex id,
we push the pair (v, u) from every neighbor u of v into the
bin represented by the coreness of v; (ii) Lines 9-11 retrieve
the sorting from the kmax + 1 bins by one scan from bin 0
to bin kmax, where N ′(u) is empty initially for every u ∈ V .
For every element (v, u) in the bins, we push v into the new
neighbor set of u s.t. the neighbors of u are ordered by vertex
rank. Besides, Line 13 records the subscripts for each vertex
according to Table 2, via one scan of the new edge set.
Complexity. Algorithm 1 costs O(m) time and O(m) space.
After running Algorithm 1, we can answer any neighbor
query N(v, ·) listed in Table 2 using O(|N(v, ·)|) time, and
return any |N(v, ·)| in O(1) time, e.g., |N(v,=)| = plus −
same. See our conference version paper [16] for the proofs.
Example 3. Figure 3 illustrates the vertex ordering for the

TABLE 2
The Ordered Neighbor Set of v

Subscript of u ∈ N(v) Constraint of u Vertex Set
[0, same− 1] c(u) < c(v) N(v,<)
[same, plus− 1] c(u) = c(v) N(v,=)
[plus, |N(v)| − 1] c(u) > c(v) N(v,>)
[same, |N(v)| − 1] c(u) ≥ c(v) N(v,≥)
[high, |N(v)| − 1] rank(u) > rank(v) N(v,>r)

Every u in N(v) is ordered by ascending order of rank;
same: position of the first u ∈ N(v) s.t. c(u) ≥ c(v);
plus: position of the first u ∈ N(v) s.t. c(u) > c(v);

high: position of the first u ∈ N(v) s.t. rank(u) > rank(v).

Algorithm 1: vertex ordering
Input : a graph G = (V,E), the coreness c(v) of every

vertex v ∈ V
Output : G with ordered V and E by vertex rank, and

position tags
/* Order vertex set V */
bin1← a list of (kmax + 1) empty arrays;1
for each v in V with ascending order of vertex id do2

bin1[c(v)].push_back(v);3

V ← concatenation of bin1[0],bin1[1], ...,bin1[kmax];4
/* Order edge set E */
bin2← a list of (kmax + 1) empty arrays;5
for each v in V with ascending order of vertex id do6

for each u in N(v) do7
bin2[c(v)].push_back(pair(v, u));8

for each i from 0 to kmax do9
for each element (v, u) in bin2[i] from head to tail do10

N ′(u).push_back(v);11

E ← each v ∈ V has neighbors N ′(v);12
same, plus, high← scan N ′(v) for every v ∈ V ;13
return G with ordered V and E, and position tags14

graph in Figure 2. Each vertex in Figure 3 is colored
according to different coreness values. On the top, all the
vertices are ordered by coreness with ties broken by ver-
tex id. The vertices in every neighbor set are also sorted
by the above order. In the figure, we show the ordered
neighbor sets of four vertices and their position tags. For
vertex v1 and v9, the position plus equals to the length
of the neighbor set because the coreness of any neighbor
is not larger than the vertex. By checking the ordering
results and Table 2, all types of |N(v, ·)| queries can be
answered in O(1), e.g., |N(v6, >)| = |N(v6)| − plus = 1.

3.3 Improved Algorithm for Best K-Core Set
An important property of hierarchical core decomposition
is its containment nature: Ck+1 ⊆ Ck for every coreness k.
This suggests that the primary values of the k-core set can
be incrementally derived from the primary values of the
(k + 1)-core set, with minor modification according to their
difference. Based on the above observation, we compute the
scores of the k-core sets in a top-down manner, i.e., for k
from kmax to 0. Note that it is costly to count some primary
values in a bottom-up manner, that is, running the baseline
in Section 3.1 for k from 0 to kmax.

Algorithm 2 shows the pseudo-code for computing the
best k. The algorithm incrementally computes and updates
the primary values of k-core sets. Note that we present the



5

Vertex Ordered Neighbors 𝑠𝑎𝑚𝑒 𝑝𝑙𝑢𝑠 ℎ𝑖𝑔ℎ

0 3 0

0 3 1

0 2 2

1 4 1

𝑣1

𝑐 𝑣 = 2 𝑐 𝑣 = 3

𝑣2 𝑣3

𝑣6 𝑣3𝑣5 𝑣7 𝑣8

𝑣8 𝑣9𝑣6 𝑣7

𝑣9 𝑣11𝑣8 𝑣10

𝑣8𝑣5 𝑣6 𝑣7 𝑣12𝑣9 𝑣10 𝑣11𝑣4𝑣1 𝑣2 𝑣3

𝑣4

𝑣12

Fig. 3. Example of Vertex Ordering

Algorithm 2: computing the best k
Input : a graph G, a community scoring metric Q
Output : the best k value for a k-core set
compute each k-core set Ck by core decomposition;1
order G by Algorithm 1;2
metric← [0, . . . , 0];3
in← 0,out← 0,num← 0;4
for each integer k from kmax to 0 do5

for v ∈ Hk do6
in← in+ |N(v,>)|+ 1

2
|N(v,=)|;7

out← out+ |N(v,<)| − |N(v,>)|;8
num← num+ 1;9

metric[k]← get_metric(Q,in,out,num);10

return metric11

computation for the clustering coefficient in Section 3.4. In
Algorithm 2, array metric records the score of every k-core
set. Let S be the subgraph induced by the visited vertices at
Line 6. The variable in records the number of internal edges
of S. The variable out records the number of boundary
edges of S where each edge has exactly one endpoint in
S. The variable num records the number of visited vertices.

Lines 3-4 initialize array metric and the primary values.
Lines 5-10 incrementally compute the score of the k-core set
from k = kmax to k = 0. For each value of k, we only
visit the vertices with coreness k at Line 6, and update the
primary values at Line 7-9. Based on the primary values for
the (k + 1)-core set, we update the values by considering
every neighbor u of the visited vertex v as follows.

• If c(u) = c(v), then (u, v) should be counted in the
value in. Line 6 will count (u, v) in in when we visit
both u and v, so we add 1

2 |N(v,=)| to in for visiting v.
• If c(u) < c(v), then (u, v) should be counted in the

value out. Line 6 will count (u, v) in out only when v
is visited, so we add |N(v,<)| to out for visiting v.

• If c(u) > c(v), then u ∈ Ck+1 and (u, v) /∈ Ck+1, i.e.,
(u, v) is a boundary edge of the (k + 1)-core set. For
the k-core, (u, v) becomes an internal edge. So we add
|N(v,>)| to in and subtract |N(v,>)| from out.

Line 10 computes the score from the primary values, e.g.,
the average degree of a k-core set is 2×in/num, the cut ratio
is 1−out/(num× (n−num)), etc. Line 11 returns the result.

Example 4. Given a community scoring metric such as av-
erage degree, Algorithm 2 runs on the graph in Figure 2
as follows. First, we compute the primary values of the
3-core set by visiting every vertex v in the 3-core set.
Because there are 8 vertices in C3, and every v ∈ C3 has

Algorithm 3: computing k by triangles and triplets
Input : a graph G, a community scoring metric Q
Output : the best k value for a k-core set
metric← [0, . . . , 0];1
triangle← 0,triplet← 0;2
f>[v]← f≥[v]← 0 for each v ∈ V ;3
compute each k-core set Ck by core decomposition;4
order G by Algorithm 1;5
for each k from kmax to 0 do6

for v ∈ Hk do7
for u ∈ N(v,>r) do8

x← u; y ← v;9
swap(x, y) if deg(x) > deg(y) ;10
for w ∈ N(x,>r) do11

triangle ++ if w ∈ N(y,>r);12

triplet← triplet+
(|N(v,≥)|

2

)
;13

kshell_nbr←
⋃

u∈Hk
N(u,>);14

for v ∈ kshell_nbr do15
f>[v]← f≥[v];16

for v ∈ Hk do17
for u ∈ N(v) do18

f≥[u] ++;19

for v ∈ kshell_nbr do20
gt k ← f>[v]; eq k ← f≥[v]− f>[v];21

triplet← triplet+
(
eq k
2

)
+ gt k × eq k;22

metric[k]←23
get_metric(Q,triangle,triplet);

return metric24

|N(v,>)| = 0 and |N(v,=)| = 3, the number of internal
edges in the 3-core set is in = 8 × (0 + 3/2) = 12. The
average degree of the 3-core set is 2×12/8 = 3. Then we
visit each vertex in 2-shell and incrementally count the
internal edges in the 2-core set. When v5, v6, v7 and v8
are sequentially visited, we have in = 12 + (1 + 1/2) +
(1 + 3/2) + (0 + 2/2) + (1 + 2/2) = 19. The average
degree of the 2-core set is 2× 19/12 ≈ 3.17. Overall, the
2-core set is preferred due to the highest average degree.

Complexity and Optimality. Algorithm 2 takes O(m) time
and O(m) space. The complexity of Algorithm 2 is optimal.
See our conference version paper [16] for the proofs.

3.4 Computation of Triangles and Triplets

Algorithm 3 shows the variant of Algorithm 2 for com-
puting the best k when the community metric is based on
triangles and triplets, e.g., clustering coefficient. Similar to
Algorithm 2, we incrementally compute the primary values
in a top-down manner: from k = kmax to k = 0. For every k-
core set, array metric records its score, triangle records
the number of triangles, and triplet records the number
of triplets. They are initialized in Line 1-2.
Triangle Counting. Lines 7-12 incrementally update the
number of triangles in the k-core set based on that in the
(k+1)-core set. Recall that the rank and the neighbor query
N(v, ·) are defined in Section 3.2. For each edge (u, v) with
rank(u) > rank(v) (Lines 7-8), we count the triangles
containing (u, v) by visiting the neighbors of x where x
is the one in {u, v} with smaller degree (Lines 9-12). To
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count triangles, we enumerate each vertex w in N(x,>r)
and check if w is also in N(y,>r). By visiting N(·, >r) of
each vertex, we ensure rank(w) > rank(u) > rank(v) for
every counted triangle, i.e., every triangle is counted exactly
once since we count the three vertices by increasing order of
vertex rank.

Triplet Counting. Recall that a triplet ⟨u, v, w⟩ is formed
by three vertices connected by two edges (v, u) and (v, w),
centered on v. (i) For each center vertex v in Hk, any pair of
the neighbors of v in the k-core can form a triplet centered
on v. Line 13 adds the number of such pairs to triplet. (ii)
Lines 14-22 count the new triplets centered on the vertices
of the (k + 1)-core set.

We use f>[v] and f≥[v] to count the number of u ∈ N(v)
such that c(u) > k and c(u) ≥ k, respectively. Here we do
not use N(v, ·), because a neighbor query in Section 3.2 only
works for vertices in the k-shell, i.e., f>[v] = |N(v,>)| and
f≥[v] = |N(v,≥)| iff k = c(v). Line 14 collects the vertices
in N(u,>) of every u with coreness k, because they are the
center vertices in the (k + 1)-core set. Line 15-19 computes
f>[v] and f≥[v] for every vertex v in the (k+1)-core set, by
updating the values from the previous iteration.

Line 20 iterates over each center vertex in the (k+1)-core
set, and Line 21 assigns to gt k and eq k the number of v’s
neighbor u such that c(u) > k and c(u) = k, respectively.
To form a triplet (uncounted) with a center vertex in the
(k + 1)-core set, (a) the other two vertices are from Hk; or
(b) one vertex is from Ck+1 and the other is from Hk. In
Line 22,

(eq k
2

)
is the number of the triplets in case (a), and

gt k × eq k is the number of the triplets in case (b).
Line 23 calculates community score using the primary

values, e.g., the clustering coefficient of a k-core is 3 ×
triangle/triplet. Line 24 returns the result.

Example 5. Given a community scoring metric such as
clustering coefficient, the execution of Algorithm 3 on
the graph in Figure 2 is as follows. We first compute the
number of triangles and triplets in 3-core set by Line 7-
13: triangle = 8 and triplet = 24. The clustering
coefficient of 3-core is 3 × 8/24 = 1. Then, we incre-
mentally compute the values for the 2-core set. Line 7-12
detect two new triangles (v5, v6, v3) and (v6, v7, v8), so
triangle = 8+2 = 10. Line 13 detects

(2
2

)
new triplets

for v5,
(4
2

)
for v6,

(2
2

)
for v7, and

(3
2

)
for v8. Line 22

iterates over kshell_nbr, that is {v3, v9}, and counts(2
2

)
+ 3× 2 new triplets for v3 and 3× 1 new triplets for

v9. To sum up, triplet = 24 + 21 = 45. The clustering
coefficient of 2-core is 3 × 10/45 ≈ 0.67. So, the 3-core
set is preferred when the metric is clustering coefficient.

Complexity and Optimality. Algorithm 3 takes O(m1.5)
time and O(m) space. The complexity of Algorithm 3 is op-
timal. See our conference version paper [16] for the proofs.

4 FINDING THE BEST K-CORE

We first review the forest hierarchy of k-cores in Section 4.1.
To find the best single k-core, we propose a baseline in
Section 4.2 and the improved algorithm in Section 4.3.

3-core

2-core

𝑁𝑆2 𝑁𝑆3

𝑣4

𝑣1 𝑣3

𝑣2

𝑣12

𝑣9 𝑣11

𝑣10

𝑣8𝑣6

𝑣5

𝑣7

𝑣4

𝑣1 𝑣3

𝑣2

𝑣12

𝑣9 𝑣11

𝑣10

𝑁𝑆1

Fig. 4. A Core Forest (Tree)

4.1 Hierarchy of k-Cores

According to the definition of k-core, the following proper-
ties hold for every integer k:

• (DISJOINTNESS) every k-core is disjoint from each other
in the same k-core set.

• (CONTAINMENT) a k-core is contained by exactly one
(k − 1)-core.

The hierarchy of k-cores can be represented by a set of
trees where each tree node is associated with a k-core, and
each tree edge is the parent-child relationship between two
tree nodes. For any k-core with k from 0 to kmax, we define
the k-core tree node as follows.
Definition 6 (k-Core Tree Node). Given any k-core S, we

build a k-core tree node NS that contains (i) the vertices
in S with coreness k (i.e., S ∩ Hk) when S ∩ Hk is not
empty, and (ii) the pointer to its parent tree node.

The vertices in a k-core tree node are not certainly
connected, because the k-shell vertices in a k-core may be
separated by other vertices with a higher coreness.
Definition 7 (Parent Tree Node). Given a graph G, a k1-core

S1 associated with NS1 , and a k2-core S2 associated with
NS2 , k1-core tree node NS1 is the parent of k2-core tree
node NS2 , if (i) k1 < k2; (ii) S2 ⊂ S1; and (iii) any k′-core
tree node with k1 < k′ < k2 is not the parent of NS2 .

Given a k-core S associated with NS , the tree node
contains the k-shell vertices while leaving the rest in its de-
scendants. Assume NS has c children NC1 , NC2 · · ·NCc , the
original S can be reconstructed recursively by the vertices in
NS and

⋃c
i=1 Ci, if every Ci has been reconstructed before.

Definition 8 (Core Forest). Given a graph G, the core forest
is constituted by all k-core tree nodes for every integer k
from 0 to kmax, where every tree node is connected to its
parent if it exists.

The core forest organizes all k-cores into a hierarchy that
can be stored in O(n) space, because each vertex exists in
one tree node and each tree node has one parent.
Example 6. Figure 4 shows the core forest of Figure 2

which has only one tree. There are three tree nodes
NS1 , NS2 , and NS3 , associated with S1, S2, and S3,
respectively. NS1 is associated with the whole graph (a 2-
core) while only the vertices in the 2-shell are contained
in NS1 . Although NS1 is also a 1-core, no 1-core tree
node would be built according to our definition. We
can reconstruct S1 from the vertices in NS1 , S2, and
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Algorithm 4: computing the best single k-core
Input : a graph G, a community scoring metric Q
Output : the best single k-core according to Q
metric← [0, . . . , 0]; pri_val← [0, . . . , 0];1
compute the coreness by core decomposition;2
order G by Algorithm 1;3
construct the forest T by LCPS [32];4
for each i from 0 to T .size()− 1 do5

for each tv ∈ T [i].child do6
pri_val[i]← pri_val[i] + pri_val[tv];7

for each v ∈ T [i].delta do8
pri_val[i]← pri_val[i] + impact of v;9

metric[i]←get_metric(Q,pri_val[i]);10

return the k-core with highest score in metric11

S3. Also, we have |S1| = |NS1
| + |S2| + |S3|, and

m(S1) = m(NS1
)+m(S2)+m(S3)+3 (boundary edges).

Forest Construction. The SOTA for constructing the forest of
k-cores is LCPS [32] (Level Component Priority Search). The
time complexity of LCPS is O(m), if a bucket data structure
is applied [41]. The pseudo-code of LCPS is provided in [16].

To adapt LCPS for our needs, three steps are required: (i)
run LCPS [32]; (ii) compress empty tree nodes; and (iii) sort
all remaining tree nodes in descending order of the coreness
of elements and store them into an array T .

4.2 Baseline Algorithm
Given a graph G and a community scoring metric Q, a
baseline solution is to first conduct core decomposition, and
forest construction for fast retrieval of a k-core. Then, it
computes the score of every k-core according to Q, for every
integer k from 0 to kmax.

By visiting the forest of k-cores, it takes O(|V (Si)|) time
to retrieve the vertex set of every k-core Si. Let O(qi) be
the time cost to compute the score of Si given V (Si), Q
and G. The time complexity of the baseline algorithm is
O

(∑kmax

k=0

∑
Si∈Ck

(
qi + |V (Si)|

))
. Although the baseline is

polynomial-time, it is still costly to handle large graphs.

4.3 Improved Algorithm for Best Single K-Core
We apply the vertex ordering in Section 3.2 and the forest
structure in Section 4.1 to design the improved algorithm.
The pseudo-code is shown in Algorithm 4. Array metric
stores the score of each k-core. Array pri_val stores the
primary values of each k-core. Here we use one variable
pri_val[i] to illustrate the computation of all the primary
values at tree node i. Array T stores the tree nodes. T [i] is
the ith element (a tree node) in T , where i is the id of T [i].

At Line 5, the algorithm processes each tree node in T
sequentially, as the nodes in T represent all the k-cores for
every integer k from kmax to 0. At Line 6-7, for each k-
core, its primary values are incrementally computed, based
on the values from the child nodes (Line 8-9) and the
additional values caused by current tree node (Line 8-10).
Line 10 computes the score according to the metric Q and
the primary values. Line 11 returns the best single k-core.
Primary Values. Line 7 updates the primary values in,
out, and num in three arrays respectively, like pri_val.

To compute these primary values, Line 9 can be replaced by
Line 7-9 of Algorithm 2 where in, out, num are replaced
by in[i],out[i], and num[i], respectively. To compute the
primary values triangle and triplet, we replace Line 9
by Line 7-22 of Algorithm 3 where triangle, triplet
become triangle[i] and triplet[i], respectively.

Complexity and Optimality. The space complexity is O(m).
Algorithm 4 takes O(n) time for primary values in, out,
and num, and O(m1.5) time for primary values triangle
and triplet. The complexity of Algorithm 4 is optimal for
any metric in Section 2.3. See our conference version paper
[16] for the proofs.

5 MAINTAINING THE BEST K-CORE SET

In this section, we maintain the best k-core set on dynamic
networks regarding different community metrics. We first
introduce a baseline that maintains the proposed vertex
ordering, and then propose an improved solution with a
new framework.

Type-A and Type-B Metrics. We divide the metrics in
Section 2.3 into two categories according to computing
complexity. The type-A metric is defined on n(S), m(S) and
b(S), while the type-B metric is defined on graph motifs [6]
including ∆(S) and t(S).

5.1 A Baseline with Vertex Ordering Maintenance

Given the index (vertex ordering and coreness), our pro-
posed static score computation is quite efficient, e.g., it costs
O(n) time on the type-A metric. Thus, a baseline solution
is to update the index (vertex ordering and the coreness
of each vertex) and query the best k-core set by the static
score computation (Algorithm 2 or 3) with the index. We
use core maintenance [59] to efficiently update the coreness.
The vertex ordering is updated as follows.

Maintenance Analysis. Vertex ordering maintenance needs
to update (i) the neighbor sets ordered by vertex rank, (ii)
the position tags in the neighbor sets (Table 2), and (iii) the
vertices ordered by vertex rank. Case (iii) can be instantly
updated after core maintenance because the vertex rank of
a vertex is decided by its coreness and vertex id.

In the following, we update the vertex ordering for
inserting (resp. removing) an edge set E′.

1. Update by Edge Change: for every (u, v) ∈ E′, we (i) use
insertion sort to insert v into N(u) (resp. remove v from
N(u)) such that N(u) remains ordered by vertex rank and
(ii) increase (resp. decrease) same(u) by 1 if c(v) < c(u),
plus(u) by 1 if c(v) ≤ c(u), and high(u) by 1 if r(v) < r(u).

2. Update by Coreness Change: let V ∗ denote the set of
vertices with coreness changed by E′. For every v ∈ V ∗

whose coreness changes from c(v) to c′(v), we (i) move v
backward (resp. forward) in any adjacency list containing
v until the list is ordered by vertex rank again and (ii)
update position tags for v and every neighbor u ∈ N(v)
with c(v) ≤ c(u) ≤ c′(v) (resp. c′(v) ≤ c(u) ≤ c(v)).

Complexity. Let O(CM) be the cost of core maintenance
[59] and O(VOM) = O(∥E′∥1 + ∥V ∗∥2) be the cost of
vertex ordering maintenance, where ∥V ∗∥c is the size of the
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Algorithm 5: ins*/rem*A(G, c,E′)
for each (v, u) ∈ E′ do upd_eA(v, u);1
V ∗ ← vertices with coreness changed to c′(v);2
for each v ∈ V ∗ do upd_cnA(v);3

def upd_eA(v, u) :4
lo, hi← min and max of c(v) and c(u);5
Ilo ++; Ohi ++; Olo−−; (opposite sign if rem*);6
G← G with (v, u) inserted or removed;7

def upd_cnA(v) :8
Nc(v) −−; Nc′(v) ++;9
for each u ∈ N(v) do10

upd_eA(v, u) for removing (v, u);11
upd_eA(v, u) for inserting (v, u) back, where the12
coreness of v is replaced by c′(v);

c(v)← c′(v);13

def queryA( ) :14
for each integer k from kmax to 0 do15

num←
kmax∑
i=k

Ni; in←
kmax∑
i=k

Ii; out←
kmax∑
i=k

Oi;
16

Q(Ck)← compute_metric(in, out, num);17

return k∗ with the highest Q(Ck∗);18

c-hop neighborhood of V ∗ and ∥E′∥c is the size of the c-
hop neighborhood of all endpoints in E′. The baseline can
(i) update index in O(CM+ VOM) time and (ii) query the
best k in O(n) or O(m1.5) time by Algorithm 2 or 3.

5.2 Dynamic Algorithm for Best K-Core Set (Type-A)
Although the baseline can maintain the best k, its update of
the index is costly and its query has to recompute the score
of each k-core set, which should be further optimized. To
maintain the scores of the k-core sets efficiently, we propose
a new framework to incrementally maintain Equation 1 that
formalizes the increment of primary values when Algorithm
2 visits every k-shell Hk. The scores and the best k can then
be quickly computed from the equations.

Nk =
∑
v∈Hk

1 = |Hk|

Ik =
∑
v∈Hk

|N(v,>)|+ 1

2
|N(v,=)|

Ok =
∑
v∈Hk

|N(v,<)| − |N(v,>)|

(1)

In Equation 1, N(v,>) (resp. N(v,=) or N(v,<))
records the subset of v′s neighbors with coreness larger than
(resp. equal to or less than) v (defined in Table 2).

For every integer k from kmax to 0, Nk (resp. Ik or Ok)
is the increment of the number of vertices (resp. edges or
boundary edges), i.e., num (resp. in or out), when Algo-
rithm 2 processes the k-shell Hk. The score of every k-core
set and the best k can be computed from N, I,O, e.g., the
average degree of Ck equals 2×

∑kmax

i=k Ii/
∑kmax

i=k Ni.
Algorithm 5 maintains the best k-core set for a type-

A metric. N , I , O are either maintained in the graph or
initialized by Equation 1. Then, we can (i) update: Lines 1-3
update N, I,O by edge and coreness change, in two steps,
such that Equation 1 holds after inserting/removing E′. OR
(ii) query: Lines 15-18 (queryA) query the best k-core set.

Step 1. Update by 
Edge Change

+ 𝑢2, 𝑣6 , (𝑢2, 𝑣8)

Step 2. Update by 
Coreness Change
𝑐 𝑢2 = 2 → 3

𝐺 Step 1 Step 2

𝐼2 7 9 6

𝐼3 12 12 15

𝑂2 -3 -5 -4

𝑂3 3 5 4

𝑣4

𝑣1 𝑣3

𝑣2

𝑣8

𝑣5 𝑣7

𝑣6

𝑢4

𝑢2

𝑢3

𝑢1

+

+

coreness = 3coreness = 2coreness = 3

Fig. 5. An Example of ins*/rem*A (Algorithm 5)

Step 1. Update by Edge Change (Line 1). The edge change
will affect N(v,>), N(v,=) and N(v,<) in Equation 1,
where v is an endpoint of the inserted/removed edge.
upd_eB updates I,O for every edge in E′ without con-
sidering the coreness change. Let (u, v) be an edge with
c(u) ≤ c(v). If c(u) < c(v), then v is inserted into N(u,>)
and u is inserted into N(v,<). Lines 5-6 update their size in
I,O accordingly. Lines 5-6 also hold for c(v) = c(u). We use
the opposite sign for edge removal at Line 6.

Step 2. Update by Coreness Change (Line 3). The coreness
of a vertex v may change many times in the update, starting
from c(v) and ending at c′(v). Our algorithm only needs one
update that moves v from Hc(v) to Hc′(v) in Equation 1.

upd_cnA can update every vertex v ∈ V ∗ whose core-
ness is changed from c(v) to c′(v) in N, I,O. Line 9 updates
Nc(v) and Nc′(v) according to the coreness change. For every
edge (v, u) incident to v, for conciseness, we update I and O
by first removing (v, u) (Line 11) and then inserting it back
(Line 12) with the updated coreness c′(v).

Query from N, I,O (Lines 15-18). We use queryA to accu-
mulate the scores of k-core sets by suffix sum and find the
best k. The query cost is O(kmax) time and is usually minor,
e.g., kmax ≤ 2208 in our datasets that are up to billion-scale.

Example 7. Figure 5 inserts (u2, v6) and (u2, v8) into G.
Initially, there are I3 = 12 edges in the 3-core set C3

and 19 edges in C2 (I2 = 7 more edges than C3). Step
1 inserts (u2, v6) and (u2, v8). Then, I2 += 2, because
lo = 2 for both edges. Step 2 updates the coreness of u2

from 2 to 3. Line 11 first removes all five edges incident
to u2 and each of them has lo = 2, i.e., I2 −= 5.
After updating the coreness to 3, Line 12 inserts back
the edges, where lo = 2 for (u2, v1) and (u2, v3), and
lo = 3 for the other three edges, i.e., we have I2 += 2
and I3 += 3. Finally, we have I3 = 12 + 3 = 15 and
I2 = 7+2− 5+ 2 = 6, i.e., there are 15 internal edges in
the 3-core set and I2 + I3 = 21 edges in the 2-core set.

For Ok, there are initially O3 = 3 boundary edges in
C3, and no boundary edges (O2 + O3 = 0) in C2. Step
1 inserts two new edges with lo = 2 and hi = 3. Thus,
O2 −= 2 and O3 += 2. Step 2 first removes five edges
incident to u2 where three edges have lo = 2, hi = 3,
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i.e., O2 += 3, O3 −= 3. All edges are then inserted
back with coreness c′(u2) = 3, and there are two edges
with lo = 2, hi = 3, i.e., O2 −= 2, O3 += 2. Finally,
O3 = 3+2−3+2 = 4 and O2 = −3−2+3−2 = −4, i.e.,
there are four boundary edges in C3 and no boundary
edge (O2 +O3 = 0) in C2.

Correctness. For every k, the correctness of updating Nk is
immediate. We prove upd_eA and upd_cnA can correctly
maintain Ik and Ok. Then, the best k can be computed from
Equation 1 as proved in Section 3.
(upd_eA): Let (v, u) be an edge to insert where lo =
c(v) ≤ c(u) = hi, WLOG. When c(v) < c(u), |N(v,>)|
and |N(u,<)| are increased by 1, we update correctly by
Ilo++, Olo++, and Ohi−−, according to Equation 1. When
c(v) = c(u), both |N(v,=)| and |N(u,=)| are increased by
1, so we increase Ilo by 1

2 × 2 = 1 and Olo=hi is unchanged.
The proof is similar for edge removal with the opposite sign.
(upd_cnA): Given a vertex v ∈ V ∗ whose coreness changes
from c(v) to c′(v). Line 9 correctly maintains N . Line 11-12
can correctly renew Ik and Ok by calling upd_eAto remove
every incident edge and insert it back with the updated
corenesses of the endpoints.
Complexity. The initialization of coreness and N, I,O take
O(m) time before the update. The update time of Algorithm
5 is O(CM+ |E′|+ ∥V ∗∥1) and the query time is O(kmax),
where ∥S∥c is the size of the c-hop neighborhood of S. This
largely outperforms the baseline that has O(CM+ ∥E′∥1 +
∥V ∗∥2) update time and O(n) query time (n ≫ kmax, e.g.,
kmax ≤ 2208 in our datasets that are up to billion-scale.).

Core maintenance (Line 2) costs O(CM) time [59], Step
1 (upd_eA) visits each edge in E′, Step 2 (upd_cnA) visits
the 1-hop neighbors of each v ∈ V ∗.
Boundness. The boundness is a measure criterion for the
effectiveness of dynamic algorithms [39], [58]. A dynamic
algorithm is bounded if its cost is of O(f(∥CHANGED∥c))
for some polynomial function f and some positve integer c,
where CHANGED comprises the changes to both the graph
and the result and ∥CHANGED∥c is the size of the c-hop
neighborhood of CHANGED [58].

In our problem, CHANGED includes the changed edges
E′ and the set of vertices with coreness changed V ∗. Af-
ter core maintenance, the update cost of Algorithm 5 is
O(|E′| + ∥V ∗∥1) time which is bounded in |E′| and the
1-hop neighborhood of V ∗.

5.3 Dynamic Algorithm for Best K-Core Set (Type-B)
The baseline is more costly for type-B metrics, as the score
computation may cost O(m1.5) time. Besides, the best k-core
set for a type-B metric is harder to maintain as we need to
update on triangles and triplets. We maintain the best k-core
set for a type-B metric by updating Equation 2 which locates
a triangle/triplet by its smallest vertex coreness.

TAk = |{triangle (u, v, w) | min{c(u), c(v), c(w)} = k}|
TPk = |{triplet (u, v, w) | min{c(u), c(v), c(w)} = k}|

(2)

For every k from kmax to 0, TAk (resp. TPk) equals the
increment of triangle (resp. triplet) when Algorithm 3
processes the k-shell Hk. Then, the clustering coefficient of

Algorithm 6: ins*/rem*B(G, c,E′)
for each (v, u) ∈ E′ do upd_eB(v, u);1
V ∗ ← vertices with coreness changed to c′(v);2
for each v ∈ V ∗ do upd_cnB(v);3

def upd_eB(v, u) : // opposite sign if rem*4
for each w ∈ N(v) do5

lo← min{c(v), c(u), c(w)};6
TPlo ++;7
if (v, u, w) is triangle then TAlo ++ ;8

for each w ∈ N(u) do run Lines 6-7;9
G← G with (v, u) inserted or removed;10

def upd_cnB(v) :11
L← min{c(v), c′(v)}; U ← max{c(v), c′(v)};12
/* prune if c(u) ≤ L or c(w) ≤ L */
for each u ∈ N(v) do13

for each w ∈ N(u) \ {v} do14
lo← min{c(v), c(u), c(w)};15
lo′ ← min{c′(v), c(u), c(w)};16
TPlo −−; TPlo′ ++;17
if (v, u, w) is a triangle not visited then18

TAlo −−; TAlo′ ++;19

gt k ←
∑

k≥U |{u | u ∈ N(v) ∧ c(u) = k}|;20

TPc(v) −=
(
gt k
2

)
; TPc′(v) +=

(
gt k
2

)
;21

for each k from (U − 1) down to (L+1) do // prune22
eq k ← |{u | u ∈ N(v) ∧ c(u) = k};23
add← eq k × gt k +

(
nck
2

)
;24

lo← min{k, c(v)}; lo′ ← min{k, c′(v)};25
TPlo −= add; TPlo′ += add;26
gt k += eq k;27

c(v)← c′(v);28

Ck equals 3 ×
∑kmax

i=k TAi/
∑kmax

i=k TPi, and we can update
the best k from the scores.

Algorithm 6 shows the pseudo-code to maintain the best
k-core set for a type-B metric. We can (i) update by edge
change and coreness change, in two steps, which is facili-
tated by a strategy for uniquely updating triangles/triplets
and an effective pruning rule to eliminate trivial trian-
gles/triplets. OR (ii) query the best k-core set from TA, TP .
Step 1. Update by Edge Change (Line 1): We use upd_eB to
update TAk, TPk for inserting/removing (u, v) without
considering the coreness change. Let (u, v) be an edge in
E′ for insertion/removal and w be a neighbor of v or u. For
edge insertion, TAlo and TPlo will be increased, where lo
is the minimum coreness of u, v and w. The edge (u, v) can
form a triplet centered at v with a neighbor of v (Line 7),
or a triplet centered at u with a neighbor of u (Line 9), or a
triangle with a common neighbor of v and u (Line 8). Note
that the opposite sign is used for edge removal.
Step 2. Update by Coreness Change (Line 3): Let v be a ver-
tex whose coreness changes from c(v) to c′(v). Given a
triangle (v, u, w), we will first remove the triangle with core-
ness c(v) from TAlo, and then insert the triangle back with
coreness c′(v) into TAlo′ , where lo = min{c(v), c(u), c(w)}
and lo′ = min{c′(v), c(u), c(w)}. The above operation can
update every triangle/triplet containing v accordingly.
Pruning by L (Lines 13-14, 22): Let L be min{c(v), c′(v)}.
Given a triangle/triplet (v, u, w), if c(u) ≤ L or c(w) ≤ L,
then the coreness change of v do not change TAk and TPk
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in Equation 2, where k = min{c(v), c(u), c(w)}. Thus, Lines
13-14 can safely skip any u or w whose coreness is not larger
than L, and Line 22 can safely skip any iteration with k ≤ L.
Update Triangles (Lines 15-19): We visit a neighbor u ∈ N(v)
and a common neighbor w ∈ N(v) ∩ N(u), which forms
a triangle (v, u, w), s.t. we visit every triangle containing v.
The intuition is to remove a triangle with the old corenesses
and then insert it back with the new corenesses, i.e., move
the triangle according to lo and lo′. Line 18 updates on each
triangle which is not visited before by labeling and checking
the corresponding (u,w) pair.
Update Triplets (Lines 17, 20-27): Line 17 updates any triplet
(v, u, w) centered at u ∈ N(v) while updating the triangles,
located by lo and lo′. Lines 20-27 update any triplet (u, v, w)
centered at v based on different k = min{c(u), c(w))},
i.e., the minimum coreness of u and w. (i) If k ≥ U , it
implies the minimum coreness of the triplet changes from
c(v) to c′(v). Let gt k be the number of v’s neighbors
whose coreness is no less than U . There are

(gt k
2

)
such

triplets as we can choose any pair of vertices out of the
gt k vertices. Line 21 removes

(gt k
2

)
triplets from TPc(v)

and inserts them back into TPc′(v). (ii) If L < k < U , Line
24 either chooses a neighbor with coreness k and another
neighbor with coreness more than k by eq k × gt k; OR
chooses two neighbors with coreness k by

(eq k
2

)
. Then, Line

26 removes eq k×gt k+
(eq k

2

)
such triplets from TPlo, and

then inserts them into TPlo′ . Note that gt k is increased by
eq k after every round, and we can retrieve eq k and gt k
in all iterations by one scan of the neighbor set of v. (iii) If
k ≤ L, pruned as discussed above.

Query from TA, TP . The query function queryB has the
same idea as queryA in the last section, except it uses
TA, TP rather than N, I,O. The query time is also O(kmax).

Correctness. upd_eB is correct on updating the edge
change. upd_cnB correctly enumerates all the triangles and
triplets for update (centered at v or its neighbor u). The
pruning by L is correct by the definition of TAk and TPk.
Overall, Algorithm 5 is correct.

Complexity. Before running the algorithm, we initialize
coreness in O(m) time and TA, TP in O(m1.5) time. The
total update time of Algorithm 6 is O(CM+∥E′∥1+∥V ∗∥2)
time and the query cost is O(kmax) time. Our algorithm
largely reduces the query time compared with the baseline,
because m1.5 ≫ kmax.

Step 1 (upd_eB) visit the neighbors for every edge
(u, v) ∈ E′. Given a vertex v ∈ V ∗, Step 2 (upd_cnB) visit
the 2-hop neighbors for Line 13-19 and needs O(d(v)) time
for Line 20-27, because U ≤ c(v) ≤ d(v).

Boundness. After core maintenance, the update cost of
Algorithm 6 is O(∥E′∥1 + ∥V ∗∥2) time and is bounded in
the 1-hop neighbors of E′ and the 2-hop neighbors of V ∗.

6 MAINTAINING THE BEST K-CORE

6.1 A Baseline with Vertex Ordering Maintenance

Given the index (vertex ordering and the core forest), our
static score computation to find the best k-core is efficient,
e.g., it costs O(n) time on a type-A metric. Thus, our baseline
is to efficiently maintain the index and then update the best

Algorithm 7: ins*/rem*HA(G, c, T , E′)
for each (v, u) ∈ E′ do upd_eHA(v, u);1
V ∗ ← vertices with coreness changed to c′(v);2
for each v ∈ V ∗ do upd_cnHA(v);3
T ← run hierarchical core maintenance [31] and update4
the arrays accordingly;

def upd_eHA(v, u) : // opposite sign if rem*5
assume c(v) ≤ c(u);6
if c(v) ̸= c(u) then7
Iv ++; Ou ++; Ov −−;8
Itid(v) ++; Otid(u) ++; Otid(v) −−;9

else10
Iv += 1

2
; Iu += 1

2
; Itid(v) += 1

2
; Itid(u) += 1

2
;11

G← G with (v, u) inserted or removed;12

def upd_cnHA(v) :13
for each u ∈ N(v) do14

upd_eHA(v, u) for removing (v, u);15
upd_eHA(v, u) for inserting (v, u) back where the16
coreness of v is replaced by c′(v);

c(v)← c′(v);17

def queryHA( ) :18
num← N ; in← I; out← O;19
for each tree node T [i] from bottom to top do20

num[i] +=
∑

j∈T [i].child num[j];21
in[i] +=

∑
j∈T [i].child in[j];22

out[i] +=
∑

j∈T [i].child out[j];23
Q(Si)← compute_metric(num[i], in[i], out[i]);24

return S∗ with the highest Q(S∗);25

k-core, similar to the intuition of Section 5.1. Specifically, we
maintain the coreness and forest structure using hierarchi-
cal core maintenance [31], maintain vertex ordering using
Section 5.1, and compute the best k-core by Algorithm 4 in
Section 4 with the updated index.

Let HCM and VOM be the cost of hierarchical core
maintenance [31] and vertex ordering maintenance in Sec-
tion 5.1, respectively. Given an edge set E′, the solution
needs O(HCM + VOM) time to update the index. Then,
we can use Algorithm 4 to query the best k-core from the
index in O(n) or O(m1.5) time respectively.

6.2 Dynamic Algorithm for Best Single K-Core (Type-A)
The update of the best k-core is more challenging than that
of the best k-core set, as the connectivity among k-cores is
complex and the hierarchy of k-cores (i.e, core forest) may
change significantly for a slight graph update [31]. To avoid
recomputing the score of every k-core, we use Equation 3 to
formalize both the primary value increment PVi (including
Ni, Ii and Oi) of a tree node T [i] in the hierarchy and
the increment PVv (including Iv and Ov) contributed by
a vertex v ∈ T [i]. Hence, we can quickly move a vertex in
the hierarchy with PVv and update the best k-core by PVi.

Ii =
∑

v∈T [i].V

Iv , where Iv = |N(v,>)|+ 1

2
|N(v,=)|

Oi =
∑

v∈T [i].V

Ov , where Ov = |N(v,>)| − |N(v,<)|

Ni = |T [i].V| is maintained in T

(3)



11

Step 1. Update by Edge Change: + 𝑢2, 𝑣6 , (𝑢2, 𝑣8)

Step 2. Update by Coreness Change: 𝑐 𝑢2 = 2 → 3

𝐺 Step 1 Step 2 Step 3

ℐ𝑢2 2 4 1.5 1.5

ℐ𝑢3 1 1 1.5 1.5

ℐ𝑣6 1.5 1.5 2 2

𝐼1 7 9 7.5 6

𝐼3 6 6 7.5 9

Step 3. Update by Hierarchy Change: Move 𝑢2 from 𝒯1 to 𝒯3
𝑣4

𝑣1 𝑣3

𝑣2

𝑣8

𝑣5 𝑣7
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+

+

coreness = 3coreness = 2coreness = 3
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𝑢2𝑢1

𝑢4

𝑢3

𝑣8
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𝑣6
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𝑣1 𝑣3

𝑣2

𝑣4

𝑣1 𝑣3
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𝒯1
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𝑣6
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𝑣2

𝑣8

𝑣5 𝑣7

𝑣6

𝒯1

Step 3

Fig. 6. An Example of ins*/rem*HA (Algorithm 7)

Let T [i] be a tree node in the hierarchy T of k-cores
(defined in Section 4.1), T [i].V be the set of the vertices
contained in T [i], and T [i].child be the children tree node.
For every tree node T [i] from bottom to top of T , Ni (resp.
Ii, Oi) in Equation 3 equals the increment of the number of
vertices (resp. edges and boundary edges), i.e., num[i] (resp.
in[i], out[i]), when Algorithm 4 processes the tree node T [i].
Given a vertex v ∈ T [i], Iv (resp.Ov) stores the contribution
of v in Ii (resp. Oi). We can get the primary value of every
k-core by a bottom-up summation on the hierarchy, and
compute the score of every k-core from the primary values.

Algorithm 7 maintains the best k-core based on Equation
3. N, I,O, I,O are either maintained in the graph or initial-
ized by Equation 3. Then, we can (i) update: Lines 1-4 update
by edge, coreness, and hierarchy change, in three steps. OR
(ii) query: Lines 19-25 (queryHA) query the best k-core.

Step 1. Update by Edge Change (Line 1): The update fol-
lows Algorithm 5 except for two differences. First, Line 11
must explicitly maintain the vertex contribution 1

2 when
c(v) = c(u), as the granularity of counting is on vertex
level unlike that on k-core sets (Algorithm 5). Second, we
update Iv,Ov and Itid(v), Otid(v) simultaneously for each
vertex v, where tid(v) is the tree node containing v. We use
the opposite sign for edge removal.

Step 2. Update by Coreness Change (Line 3): For a vertex
v ∈ V ∗, we remove every incident edge with c(v) and then
insert back it with c′(v). We do not process N because it is
already maintained in T .

Step 3. Update by Hierarchy Change (Line 4): The hierar-
chy structure of k-cores is updated by hierarchical core
maintenance (HCM) [31]. Meanwhile, we can update all
the changes in HCM by PVi (including Ni, Ii and Oi) and
PVv (including Iv and Ov), where PVi and PVv contain
the increments of the primary values of the tree node T [i]
and the vertex v ∈ T [i], respectively. Our update only needs
constant time for every hierarchy change (move of a vertex).

• create a tree node T [i]: PVi ← 0.
• parent change of T [i]: PVi stays the same.
• move a vertex v from T [i] to T [j]: run PVi −= PVv

and PVj += PVv to move vertex contribution.
• merge tree nodes: move the corresponding vertices.
• split a tree node: create tree node(s) and move vertices.

Query from N, I,O (Lines 19-25). In queryHA, we sum up
the primary values from bottom to top of T , update the
score of every k-core, and find the best k-core. The time cost
is O(|T |) time which is also usually minor, e.g., |T | ≤ 4087
in our datasets that are up to billion-scale.

Example 8. Figure 6 shows the change of primary values
and core forest after edge insertion, where T2 is neglected
because it is not changed. Initially, u2 has two neighbors
u1, u3 with the same coreness and one neighbor v5 with
a larger coreness, i.e., Iu2

= 1
2 × 2+ 1 = 2. Step 1 inserts

edges (u2, v6), (u2, v8), and we have Iu2 += 2 because
u2 has a lower coreness in both edges. We also update
by I1 += 2 as u2 ∈ T [1]. Step 2 updates the coreness
of u2 from 2 to 3. Line 15 remove all incident edges of
u2, where u2 has a lower coreness than v5, v6, v8 and
the same coreness to u1, u3, i.e., Iu2 −= 4 (3 + 2 × 1

2 ).
Line 16 inserts back the edges with c′(u2) = 3, where
u2 has two neighbors u1, u3 with a lower coreness and
three neighbors v5, v6, v8 with the same coreness, i.e.,
Iu2

+= 1.5 (3 × 1
2 ). Step 2 also updates I1 (resp. I3)

when updating a vertex contained in T [1] (resp. T [3]).
Finally, Step 3 updates the hierarchy, by moving u2 from
T1 to T3, i.e., I1 −= Iu2

and I3 += Iu2
.

Correctness. The update in upd_eHA and upd_cnHA is
correct as analyzed in Algorithm 5. The correctness of the
update on hierarchy change is immediate as we follow the
definition of core forest in Section 4.1.

Complexity. Algorithm 7 can update an edge set E′ in
O(HCM+ |E′|+∥V ∗∥1) time, and each query takes O(|T |)
time. The baseline has O(HCM + ∥E′∥1 + ∥V ∗∥2) up-
date time and O(n) query time. Our algorithm largely
reduces the update cost and the query time (n ≫ |T |, e.g.,
|T | ≤ 4087 in our datasets that are up to billion-scale). Step
1 needs O(|E′|) time, Step 2 iterates over the neighbors of
V ∗ in O(∥V ∗∥1) time, Step 3 needs O(HCM) time.

Boundness. After HCM, the update cost is O(|E′|+ ∥V ∗∥1)
time, which is bounded in the size of E′ and the 1-hop
neighbors of V ∗. Step 3 can update any hierarchy change
during HCM [31] in constant time and can be ignored.
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Algorithm 8: ins*/rem*HB(G, c, T , E′)
for each (v, u) ∈ E′ do upd_eHB(v, u);1
V ∗ ← vertices with coreness changed to c′(v);2
for each v ∈ V ∗ do upd_cnHB(v);3
T ← run hierarchical core maintenance [31] and update4
the arrays accordingly;
def get_lov(v, u, w) :5

return the endpoint with the lowest vertex rank;6

def upd_eHB(v, u) : // opposite sign if rem*7
for each w ∈ N(v) do8

lov ← get_lov(v, u, w);9
T P lov ++; TPtid(lov) ++;10
if (v, u, w) is triangle then11
T Alov ++; TAtid(lov) ++;12

for each w ∈ N(u) do run Lines 9-10;13
G← G with (v, u) inserted or removed;14

def upd_cnHB(v) :15
L← min{c(v), c′(v)};16
/* prune if c(u) < L or c(u) < L */
for each u ∈ N(v) do17

for each w ∈ N(u) \ {v} do18
lov ← get_lov(v, u, w);19
lov′ ← get_lov(v, u, w) where the coreness20
of v is replaced by c′(v);
T P lov −−; TPtid(lov) −−;21
T P lov′ ++; TPtid(lov′) ++;22
if (v, u, w) is a triangle not visited then23
T Alov −−; TAtid(lov) −−;24
T Alov′ ++; TAtid(lov′) ++;25

i← 0;26
for each u ∈ N(v) in descending vertex rank do27

lov, lov′ ← run Line 19-20 with w omitted;28
T P lov −= i; TPtid(lov) −= i;29
T P lov′ += i; TPtid(lov′) += i;30
i ++;31

c(v)← c′(v);32

6.3 Dynamic Algorithm for Best Single K-Core (Type-B)

For type-B metrics, we should compute the vertex contri-
bution regarding triangles and triplets s.t. the best k-core
can be efficiently maintained. Thus, we propose Equation 4
to assign a triangle/triplet to its endpoint with the lowest
vertex rank (defined in Section 3.2), i.e., the vertex with the
lowest id among the endpoints having the smallest coreness.

T Av = |{triangle (u, v, w) | v has the lowest rank}|
T Pv = |{triplet (u, v, w) | v has the lowest rank}|
TAi =

∑
v∈T [i].V

T Av , TPi =
∑

v∈T [i].V

T Pv

(4)

For every tree node T [i] from bottom to up, TAi (resp.
TPi) represents the increment of the number triangles (resp.
triplets) by T [i] and T Av (resp. T Pv) represents the incre-
ment by a vertex v ∈ T [i].

Algorithm 8 maintains the best k-core based on Equation
4. TA, TP, T A, T P are either maintained in the graph or
initialized by Equation 4. Then, we can (i) update by edge,
coreness, and hierarchy change, in three steps. OR (ii) query
the best k-core.

Step 1. Update by Edge Change (Line 1): The idea is similar
to Algorithm 6, and the differences are (i) vertex rank is used
and (ii) we update TA, T A (resp. TP, T P) simultaneously,
where lov is the endpoint with the lowest vertex rank. The
opposite sign is used for removals.
Step 2. Update by Coreness Change (Lines 2-3): Let v ∈ V ∗

be a vertex whose coreness changes from c(v) to c′(v). Let
lov (resp. lov′) be the endpoint with the lowest vertex rank,
when the coreness of v is c(v) (resp. c′(v)). Given a trian-
gle/triplet, we first remove it from T Alov and TAtid(lov),
then insert it back into T Alov′ and TAtid(lov′). The above
operation can update every triangle/triplet containing v.
Pruning by L (Lines 17-18): The logic is like the pruning in
Algorithm 6, except the lower limit L is open as two vertices
with the same coreness may have different vertex ranks.
Update Triangles (Lines 23-25): Lines 23-25 visit a neighbor
u ∈ N(v) and a common neighbor w ∈ N(v) ∩ N(u), to
update the numbers of triangles containing v by lov, lov′.
Update Triplets (Lines 21-22, 26-31): Lines 21-22 update the
triplets centered at u ∈ N(v) during the update of triangles.
Lines 26-31 update every triplet (u, v, w) centered at v. Line
27 visits every neighbor of v in descending order of vertex
rank, where we use bucket sort for ordering. In each round,
u has i neighbors of v with larger vertex rank (i.e., w), and
we update all such triplets (u, v, w) using lov, lov′.
Step 3. Update by Hierarchy Change (Line 4): The update is
same to Step 3 of Section 6.2, except that we replace PVi and
PVv by TAi, TPi and T Av, T Pv , respectively.
Query from TA, TP . The idea of queryHB is similar to
queryHA in Section 6.2. We do not maintain the scores due
to the same reason in Section 6.2.
Correctness. upd_eHB is correct on updating the edge
change. For a vertex v ∈ V ∗ whose coreness is changed,
upd_cnHB correctly updates every triangle and triplet (cen-
tered at v or its neighbor u) containing v, according to our
analysis above. The update by hierarchy change is correct as
we follow Step 3 of Algorithm 5. Overall, Algorithm 8 can
correctly update the best k-core for a type-B metric.
Complexity. Before the update, we initialize the coreness,
the core forest T , and arrays in O(m1.5) time. Algorithm 8
can update an edge set E′ in O(HCM + ∥E′∥1 + ∥V ∗∥2)
time, and each query takes O(|T |) time. Lines 26-31 run
in O(d(v)) time by bin sort. The baseline has O(HCM +
∥E′∥1 + ∥V ∗∥2) update time and O(m1.5) query time. Our
algorithm largely reduces the query time (m1.5 ≫ |T |).
Boundness. After HCM, the update cost of Algorithm 8
is O(∥E′∥1 + ∥V ∗∥2) time, which bounded in the 1-hop
neighborhood of E′ and the 2-hop neighborhood of V ∗. Step
3 updates any change in HCM instantly and can be ignored.

7 EXPERIMENTAL EVALUATION

Datasets. We use 10 public real-world networks from differ-
ent areas including collaboration networks, Internet topol-
ogy, brain networks, and social networks. Hollywood and
Human-Jung are from http://networkrepository.com, and
the others are from http://snap.stanford.edu. The details of
the data are shown in Table 3, ordered by the number of
edges, where davg is the average degree, kmax is the largest
vertex coreness, and |T | is the size of the core forest.

http://networkrepository.com
http://snap.stanford.edu
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Fig. 7. Scores of Every k-Core Set
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Fig. 8. Score of Every k-Core

TABLE 3
Statistics of Datasets

Dataset n m davg kmax |T |
Astro-Ph 18,772 198,110 21.1 56 376
Gowalla 196,591 950,327 9.7 51 74
DBLP 317,080 1,049,866 6.6 113 766
Youtube 1,134,890 2,987,624 5.3 51 139
As-Skitter 1,696,415 11,095,298 13.1 111 902
LiveJournal 3,997,962 34,681,189 17.4 360 1755
Hollywood 1,069,126 56,306,653 105.3 2208 678
Orkut 3,072,441 117,185,083 76.3 253 253
Human-Jung 784,262 267,844,669 683.1 1200 4087
FriendSter 65,608,366 1,806,067,135 55.1 304 450

TABLE 4
Summary of Algorithms

Notation Description
static our static baseline (see Sections 3.1 and 4.2)
static* our static algorithm (see Algorithms 2-4)
ins/rem our dynamic baseline (see Sections 5.1 and 6.1)
ins*/rem* our dynamic algorithm (see Algorithms 5-8)

Metrics. We use the six representative community scoring
metrics in Section 2.3, i.e., average degree, density, cut ratio,
conductance, modularity, and clustering coefficient.

Algorithms. Table 4 presents the algorithms we evaluate,
where the static baseline is state-of-the-art in finding the
best k-core set (and the best k-core) before proposing our
improved algorithms. Given a metric Q mentioned above,
each static (resp. dynamic) algorithm can compute (resp.
update) the best k-core set and the best k-core regarding Q.
For clarity, we rename the static algorithms in the present
work, i.e., the naming of them is different from [16].

Environment. We perform experiments on a CentOS Linux
server (Release 7.5.1804) with a Quad-Core Intel Xeon CPU
(E5-2630 v4 @ 2.20GHz) and 128G memory. All algorithms
are implemented in C++ and are compiled with g++ 7.3.0
under O3 optimization.

7.1 Community Quality by Different k

Scores of k-Core Sets. Figure 7 shows the scores of the
k-core set for different k, regarding different community

metrics. According to the trends of score on different k,
trivial values for k will often find low-quality k-core sets.
A user-defined k value (e.g., 100) is not promising. Besides,
a value based on dataset statistics (e.g., average degree or
kmax) does not necessarily produce a high-quality k-core
set. Very small k values are often preferred for the metric
of cut ratio or conductance, as a small k can minimize the
inter-connections among different k-cores. Thus, using these
metrics solely may lead to trivial k values, and it is better
to combine them with other metrics to decide a k value.
Our paper aims to consider as many metrics as possible, but
these metrics are not equally useful in practice.

Scores of Single k-Cores. Figure 8 shows the scores of all
the k-cores, where c in the x axis is the sequence id of a k-
core in the order that ranks all k-cores by ascending values
of k with ties broken by ascending scores of the k-cores.
The y-axis is the community score of a k-core. The figure
presents a finer granularity of score distribution in core de-
composition on different metrics. To clearly show the result,
the trends are depicted by the average score of every 20
(resp. 5) consecutive k-cores in LiveJournal (resp. Orkut and
Friendster). The trends of score imply that many high-score
k-cores come from relatively low-score k-core sets. Similar
to finding the best k-core set, considering only the cross-
connections of k-cores (e.g., cut ratio and conductance) may
not be effective since extremely small k values are preferred
by these metrics. We may consider using a combination of
different metrics to find the high-quality k-cores.

Best k Values. Table 5 shows the best k identified by finding
the best k-core set and the best single k-core. The name
of the result is formed by two parts. The first part uses
KCS- (resp. KC-) to represent the result of the best k-core set
(resp. the best k-core). The second part describes the used
community scoring metric (Section 2.3), i.e., average degree,
density, cut ratio, conductance, modularity, and clustering
coefficient. For conciseness, we abbreviate them to ad, den,
cr, con, mod, and cc, respectively. For example, KCS-ad is
the best k-core set by average degree, and KC-cc is the best
k-core by clustering coefficient. When multiple k values
provide the highest score, we record the largest k value.
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Fig. 9. Time of Finding the Best k-Core Set (Static)
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Fig. 10. Time of Finding the Best Single k-Core (Static)

TABLE 5
Best k for the k-Core (Set)

Result AP G D Y AS LJ H O HJ FS
KCS-ad 36 45 113 47 97 320 2208 229 1059 274
KCS-den 56 51 113 51 111 360 2208 253 1200 304
KCS-cr 1 1 1 1 1 3 1 3 1 44
KCS-con 1 1 1 1 1 1 1 1 1 1
KCS-mod 26 13 7 6 14 27 303 62 675 112
KCS-cc 56 51 113 51 111 360 2208 253 1200 304
KC-ad 36 45 64 47 90 194 2208 229 1058 274
KC-den 56 8 113 5 3 89 2208 253 11 9
KC-cr 17 1 1 1 2 1 1 1 5 1
KC-con 17 1 1 1 2 1 1 1 5 61
KC-mod 26 13 7 6 14 27 303 62 675 66
KC-cc 56 8 113 5 3 89 2208 253 11 9

TABLE 6
Community A (k = 17)

Vijay Gadepally William Arcand Andrew Prout
Charles Yee Michael Jones Albert Reuther
Anna Klein Matthew Hubbell Jeremy Kepner

Bill Bergeron David Bestor Julie Mullen
Antonio Rosa Chansup Byun Peter Michaleas

Lauren Milechin Siddharth Samsi Michael Houle

TABLE 7
New Members of Community A (2019-2024)

Guillermo Morales Chad R. Meiners Doug Stetson
Hayden Jananthan Timothy Davis Sandeep Pisharody

TABLE 8
Community B (k = 9)

Danyang Zhao Xianyi Wang Congliang Liu
Cheng Liu Yueqiang Sun Qifei Du

Dongwei Wang Yuerong Cai Chunjun Wu
Weihua Bai Junming Xia Xiangguang Meng

Different community metrics have different preferences
on the best value of k. For k-core set, ad, den and cc prefer
large values of k for high cohesiveness, while cr and con
give high scores when k is small for sparse cross-connection.
Some metrics choose an extreme value of k, which implies
that a combination of these metrics should be used. The
mod metric chooses moderate values of k considering both
the inner and outer connection of the k-cores.

7.2 Case Study on High Score k-Cores
Using different community scoring metrics, our algorithms
can find different high-quality k-cores in the DBLP dataset.

Table 6 shows community A (a 17-core) in which
the members are mainly from Lincoln Laboratory Super-
computing Center, MIT. This community is identified as the
best by the score of average degree, internal density, and
clustering coefficient, respectively. Community A are highly
collaborative in research: they have 6 co-authored papers by
all members, 15 co-authored papers by at least 17 members,
and 20 co-authored papers by at least 16 members.

Table 8 shows community B (a 9-core) in which the mem-
bers are from the National Space Science Center, Chinese
Academy of Sciences. Community B is relatively isolated
from other authors, according to its highest cut ratio and
conductance. The members in Community B are also tightly
connected: there are 8 co-authored papers by all members
and 13 co-authored papers by at least 11 members.

7.3 Case Study on Dynamics of High Score k-Cores
Our proposed algorithms can track the dynamics of high-
quality k-cores in the DBLP network. For example, com-
munity A (Table 6 in Section 7.2) in the DBLP network is
found in our conference paper [16], while DBLP has under-
gone significant evolution during these years. Recall that
community A was formed by scholars from MIT Lincoln
Laboratory Super-computing Center in 2019. In this case
study, Table 7 presents 6 new members of this community
that our method detects in 2024, according to the same
metric in Section 7.2. Most new members are either new
staff at MIT Lincoln Laboratory, or existing staff who moved
from other groups into the Cyber Operations and Analysis
Technology Group. Dr. Timothy Davis is a professor at Texas
A&M who collaborates with MIT Lincoln Laboratory and is
the only member outside MIT. Our algorithm takes no more
than 1ms per edge to update community A.

7.4 Runtime of Static Algorithms

Finding the Best k Value. In Figure 9, static is the
baseline algorithm proposed in Section 3.1 which contains
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score computation and core decomposition [5]. static* is
the improved algorithm (Algorithm 2 or 3) which contains
score computation, core decomposition, and index building,
i.e., the vertex ordering proposed in Section 3.2.

Figure 9 shows that static* is significantly faster than
static on all the datasets. For each dataset, index building
and core decomposition only need to be executed one time,
while score computation can be run for many times given
the different community metrics. The margins become larger
(1-4 orders of magnitude) if we do not count index build-
ing time in static*. On Hollywood, Human-Jung, and
FriendSter, the baseline cannot finish within 105 seconds
for clustering coefficient. As analyzed in Section 3.3, the
time complexity of score computation is determined by the
number of vertices for 5 metrics, which exactly matches the
trends in Figure 9. The runtime on density and cut ratio is
almost the same as that on average degree.

Finding the Best Single k-Core. In Figure 10, static is the
baseline algorithm proposed in Section 4.2, static* is the
improved algorithm (Algorithm 4.3) where the index con-
tains core decomposition, the vertex ordering in Section 3.2,
and the forest construction in Section 4.1.

Figure 9 shows that static* still largely outperforms
static. The trends of runtime are very similar to Figure 9,
except the runtime of the algorithms is larger due to the
computation of k-core connectivity. On Hollywood, Human-
Jung, and FriendSter, the baseline cannot finish in 105

seconds for clustering coefficient. The runtime on density
and cut ratio is almost the same as that on average degree.
Overall, static* outperforms static by 1-4 orders of
magnitude in runtime on different datasets.

7.5 Runtime of Dynamic Algorithms

When testing dynamic algorithms, we randomly remove x
edges from the graph and then insert them back. We repeat
each experiment three times and report the average result.

Maintaining the Best k Value (1 Edge). Figure 11 reports
the runtime of maintaining the best k-core set. The runtime
includes update and query time. Our improved solution
significantly outperforms the baseline, achieving up to 4
orders of magnitude faster runtime for type-A metrics and
6 orders for type-B metrics.

Maintaining the Best Single k-Core (1 Edge). Figure 12
shows the runtime (update+query) of maintaining the best
k-core. For type-A metric, our solution is up to 4 orders
faster than the baseline. However, the total runtime of
both algorithms is relatively close, as the dominant cost is
from HCM. For the type-B metric, our solution is 3 orders
faster compared with the baseline. The edge removal of our
algorithm has a greater time cost than the insertion, as HCM
incurs a higher cost of removal.

Scalability for Maintenance. Figure 13-14 report the run-
ning time of our solution, varying the number of edges to
insert/remove x from 1 to 1024. Our improved algorithms
scale almost linearly on all the datasets.

Figure 13 reports the scalability of maintaining the best
k-core set. The runtime of our solution is less than 100ms for
the type-A metric and 15s for the type-B metric, respectively.
The time cost on the Holly dataset increases faster than the

TABLE 9
Performance of static*-D on Densest Subgraph & Maximum Clique

Dataset
CoreApp static*-D static*-D (output S∗)

davg time (s) davg time (s) MC ⊆ S∗ |S∗|/n
AP 56.035 0.11 58.923 0.02 ✓ 7.87%
G 76 0.195 87.593 0.093 0.28%
D 113 0.233 113.13 0.138 ✓ 0.04%
Y 86.066 0.594 91.1 0.498 ✓ 0.18%
AS 150.018 1.145 178.801 1.374 0.03%
LJ 374.71 4.943 387.027 4.832 ✓ 0.01%
H 2208 3.002 2208 3.635 ✓ 0.21%
O 438.64 20.14 455.732 11.72 0.85%
HJ 2013.879 15.272 2114.915 14.457 ✓ 1.15%
FS 513.852 1041.528 547.035 836.279 0.08%

S∗ is the output of static*-D. davg is the average degree of
output. MC ⊆ S∗ means the maximum clique is contained in S∗.

|S∗|/n is the vertex proportion of S∗ in the whole graph.

TABLE 10
Performance of static*-SC on Size-constrained k-core (DBLP)

c(v) k = 10 k = 15 k = 20 k = 30 k = 40
30 96.45% 88.31% 76.21% 20.97% /
43 97.46% 91.41% 82.10% 37.87% 6.69%
51 99.12% 96.75% 92.64% 49.81% 30.77%
64 98.61% 95.15% 89.62% 61.88% 57.86%

113 98.61% 95.15% 89.62% 61.88% 57.86%

Given a random node v with coreness c(v), the percentage that
static*-SC returns a k-core with at most 5% size deviation to h.

others, because Holly contains a 2209-clique that is likely to
create a large V ∗ with coreness changed, leading to a larger
cost. The cost of edge insertion is close to edge removal.

Figure 14 reports the scalability of maintaining the best
k-core. The runtime has a close trend to the cost of HCM as
it is dominant in total cost. The time cost is higher than that
in Figure 13, as HCM is more costly than core maintenance.
The removal is slower than the insertion because HCM has
a higher cost on edge removal.

7.6 Applications on Other Problems
For k-core-related problems, our algorithms can serve as
better approximate solutions compared with the state-of-
the-art, or produce useful intermediate results.
Densest Subgraph. The densest subgraph (DS) problem
is to find the subgraph with the largest average vertex
degree [23]. Let static*-D be our static algorithm that
returns the best k-core regarding average degree (Algorithm
4). Our static*-D produces a 1

2 -approximate solution for
DS problem, because the kmax-core is one of our candidate
results, which is a 1

2 -approximate solution [23]. We compare
our algorithm with the recent approximate solution named
CoreApp [23] which is the fastest algorithm for DS problem.
As shown in Table 9, static*-D outperforms CoreApp in
both output quality (average degree) and runtime on most
datasets. The better values in Table 9 are marked in bold.
Maximum Clique. The maximum clique (MC) problem is
to find the largest subset of vertices such that every pair of
vertices in the subset is adjacent [11]. As shown in Table 9,
it is likely that S∗ contains the maximum clique (6 out of
10 datasets), although S∗ is not large (the proportion of S∗

in the whole vertex set is often within 1%). This finding can
benefit the algorithm design for MC problem.
Size-Constrained k-Core. Given an integer k, an integer h,
and a vertex v, the problem of size-constrained k-core (SCK)
is to find a k-core of size h which contains v. We adapt
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Fig. 11. Time of Maintaining the Best k-Core Set (Dynamic)
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Fig. 12. Time of Maintaining the Best k-Core (Dynamic)
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Fig. 13. Time of Inserting/Removing x Edges (k-Core Set)

10
-6

s

10
-4

s

10ms

1s

100s

2
0

2
2

2
4

2
6

2
8

2
10

x

(a) Type-A, Insert

10
-6

s

10
-4

s

10ms

1s

100s

2
0

2
2

2
4

2
6

2
8

2
10

x

(b) Type-A, Remove

10
-6

s

10
-4

s

10ms

1s

100s

2
0

2
2

2
4

2
6

2
8

2
10

x

(c) Type-B, Insert

10
-6

s

10
-4

s

10ms

1s

100s

2
0

2
2

2
4

2
6

2
8

2
10

x

(d) Type-B, Remove

Fig. 14. Time of Inserting/Removing x Edges (Single k-Core)

TABLE 11
Performance of ins*-D/rem*-D on Dynamic Densest Subgraph

Dataset
Sawlani and Wang [42] (ϵ = 0.5) Our ins*-D/rem*-D

0-5% graph full graph 0-5% graph full graph
ins 1k rem 1k space ins 1k rem 1k space ins 1k rem 1k

AP 18.8 18.9 124GB 0.03 0.05 8.5MB 0.01 0.02
G 41.1 41.3 OOM 0.67 0.26 43.9MB 0.09 0.35
D 51.0 51.1 OOM 1.64 0.18 64.7MB 0.29 0.93
Y 92.6 93.8 OOM 5.28 1.26 224MB 0.77 5.78
AS 107.8 108.3 OOM 1.14 3.86 374MB 0.66 2.87
LJ 148.7 150.5 OOM 1.63 4.34 946MB 0.94 5.93
H 82.6 83.2 OOM 0.55 1.52 620MB 1.63 3.12
O 132.9 134.6 OOM 0.58 3.78 1.42GB 0.26 8.17
HJ 77.2 79.2 OOM 0.15 0.85 2.23GB 0.06 6.73
FS 195.7 196.5 OOM 7.95 95.4 25.2GB 4.90 354.09

‘OOM’ is Out Of Memory. ‘ins 1k’ (resp. ‘rem 1k’) denotes the
running time of inserting (resp. removing) 1000 edges in seconds.

our static algorithm to the SCK problem with the following
method called static*-SC. It first selects the k′-core S′

with the highest average degree by Algorithm 4, where
(i) k′ ≥ k; (ii) S′ contains v; and (iii) |V (S′)| ≥ h. Then,
static*-SC peels S′ until |V (S′)| ≤ h to find more results
(k-cores): in each step, it removes the vertex with the lowest
degree (skip v) and any vertex with degree less than k in S′.

Table 10 shows the performance of static*-SC on
DBLP. We say static*-SC hits a query if the returned
k-core contains v and has at most 5% size deviation to h.
static*-SC hits the query with high probability when c(v)
is larger than k. Note that some coreness values may have
no vertex with such coreness. As static*-SC runs in linear
time, it can benefit the algorithm design for SCK problem.

Dynamic Densest Subgraph. The dynamic densest sub-
graph (DDS) problem is to update the subgraph with the
largest average vertex degree on dynamic graphs [42]. Let

ins*-D/rem*-D be our dynamic algorithm that maintains
the best k-core regarding average degree (Algorithm 7). Our
ins*-D/rem*-D also maintains a 1

2 -approximate DS, as it
has the same output as the static algorithm. We compare
our algorithm to the Sawlani and Wang’s algorithm [42], the
SOTA for dynamic (1− ϵ)-approximate DS (we set ϵ = 0.5).

Table 11 summarizes the performance for the dynamic
densest subgraph. The algorithms are run on either a small
subset of the graph (5% or less if out-of-memory, i.e., OOM)
or the full graph. When inserting/removing 1000 edges,
our proposed solution outperforms the SW algorithm by
up to orders and is up to 3 orders faster than re-running
static*-D (Table 9). Importantly, the SW algorithm faces
an OOM error when running on the full graph for all
datasets, except the smallest one. The reason is that the SW
algorithm must insert each edge individually into an empty
graph, resulting in a prohibitive number of edge copies (e.g.,
59, 118 for Astro-Ph and even more for other datasets). In
contrast, our algorithm can initialize the full graph either
by the static algorithm or by inserting all edges in a batch,
thereby avoiding OOM issues.

Our dynamic algorithms can also help update the maxi-
mum clique or size-constrained k-core.

8 RELATED WORK

Cohesive Subgraph Search. Diverse models of cohesive
subgraph are proposed in network analysis [49], [53],
e.g., clique [15], quasi-clique [38], k-core [5], [26], [43], k-
truss [18], [24], k-plex [48], and k-ecc [12], [61]. Some cohe-
sive subgraph models can decompose a graph into a hierar-
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chy, e.g., core decomposition [34], [51], truss decomposition
[44], [46], [60], and ecc decomposition [12], [55].
k-Core Decomposition. An O(m) time in-memory algo-
rithm for core decomposition is proposed in [5]. Core main-
tenance [59] can update a k-core decomposition for dynamic
graphs. The core decomposition under distributed configu-
ration is introduced in [34]. An I/O efficient algorithm for
core decomposition is proposed in [51]. Various variants of
k-core are explored, including (k, r)-core [56], diversified
coherent k-core [63], and skyline k-core [29].
Core Forest. Core forest is also known as hierarchical core
decomposition (HCD). LCPS [32] can build the HCD of a
graph in O(m) time. The algorithm of HCD maintenance
on large dynamic networks is proposed in [31]. The parallel
algorithms for HCD and the subgraph search on the HCD
are proposed in [17]. Core forest and its equivalences can
facilitate community search query, e.g., ShellStruct [4]
can handle the local query of k-cores, CL-Tree [21] can
search attributed communities, and ICP-Index [30] can
answer influential communities time-optimally.
Community Scoring Metrics. The metrics for community
evaluation are surveyed in [10], [54] such as modularity [36]
and clustering coefficient [25]. Community scoring metrics
can formalize the notion of network communities and com-
pare the communities produced by different algorithms [28].
Different communities can be found by the optimizations on
different community metrics, e.g., [1], [14], [52]. Miyauchi
et al. [33] introduce a reasonable community metric that
outperforms the modularity. GREEDY++ [8] is an (1 − ϵ)-
approximate solution for the densest subgraph problem
[13]. Andersen et al. [2] propose an approximation algo-
rithm for conductance using the Personalized PageRank.
Tsourakakis et al. [45] study the k-clique densest subgraph
problem, and the method cannot adapt to our problem.
Different from these works, our paper aims to find the best k
with respect to different metrics under a unified framework.

9 CONCLUSION

We study the problems of computing the best k-core set
and the best single k-core with respect to a community
scoring metric. We propose time and space optimal algo-
rithms for the problems on static graphs, and time-bounded
algorithms for the problems on dynamic graphs. Extensive
experiments on 10 real-world graphs show that our algo-
rithms significantly outperform the baselines in runtime and
provide profound insights for the related problems.
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