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As the volume and ubiquity of graphs increase, a compact graph representation becomes essential for enabling

efficient storage, transfer, and processing of graphs. Given a graph, the graph summarization problem asks for

a compact representation that consists of a summary graph and the corrections, such that we can recreate

the original graph from the representation exactly. Although this problem has been studied extensively, the

existing works either trade summary compactness for efficiency, or vice versa. In particular, a well-known

greedy method provides the most compact summary but incurs prohibitive time cost, while the state-of-the-art

algorithms with practical overheads are more than 20% behind in summary compactness in our comparison

with the greedy method.

This paper presents Mags and Mags-DM , two algorithms that aim to bridge the compactness and efficiency

in graph summarization.Mags adopts the existing greedy paradigm that provides state-of-the-art compactness,

but significantly improves its efficiency with a novel algorithm design. Meanwhile,Mags-DM follows a different

paradigm with practical efficiency and overcomes its limitations in compactness. Moreover, both algorithms

can support parallel computing environments. We evaluate Mags and Mags-DM on graphs up to billion-scale

and demonstrate that they achieve state-of-the-art in both compactness and efficiency, rather than in one of

them. Compared with the method that offers state-of-the-art compactness, Mags and Mags-DM have a small

difference (< 0.1% and < 2.1%) in compactness. For efficiency, Mags is on average 11.1x and 4.2x faster than

the two state-of-the-art algorithms with practical overheads, while Mags-DM can further reduce the running

time by 13.4x compared with Mags. This shows that graph summarization algorithms can be made practical

while still offering a compact summary.
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1 INTRODUCTION
Graphs abstract the relationships between entities, e.g., web links [5, 7, 34] and friendships among

people [4, 9, 11]. People are increasingly interested in graphs nowadays and are producing more

graph data than ever before. Large-scale graphs thus have become ubiquitous across different

domains [10, 33, 42, 44].

A compact representation is essential for handling large graphs. It can save precious hardware

resources (e.g., memory, disk, and network I/O) and speed up algorithms by allowing a large

portion of the graph to reside in the cache [7, 15, 35]. This motivates a large body of techniques

for compressing graphs [1–5, 7–9, 14, 17, 20–30, 32, 34–37, 39, 45, 46], including relabeling node

[1, 5, 9, 14], compressing adjacency lists by reference encoding [5], encoding graph patterns

[17, 23, 32], etc. Among these works, graph summarization [2, 21, 22, 24, 25, 27, 30, 34, 45] is a line

of works that are particularly effective in compressing graphs and discovering structural patterns.

According to our experiments, graph queries can be answered efficiently on the summary graph

(see Section 6.6).

Given a graph G, the graph summarization problem asks for a minimum-sized representation 𝑅 =

(𝑆,𝐶) that contains a summary graph and the edge corrections. The summary graph 𝑆 aggregates

the nodes with similar neighbor structures. The super-nodes in 𝑆 are disjoint sets of nodes in G,
while a super-edge in 𝑆 means linking all node pairs between the two sets of nodes. The edge
corrections 𝐶 contains the edges to insert and remove, when we restore G from the summary graph

exactly or with an accuracy guarantee (i.e., lossless or lossy summarization). Our paper mainly

focuses on lossless graph summarization.

Navlakha et al. [30] are the first to formulate the problem of graph summarization, and they

present a greedy method for graph summarization (referred to as Greedy). This method is well

accepted for its simplicity and effectiveness, but it is prohibitive in time cost. Specifically, it runs in

𝑂 (𝑛 · 𝑑𝑎𝑣𝑔3 · (𝑑𝑎𝑣𝑔 + log𝑚)) time [30], where 𝑛 and𝑚 are the number of nodes and edges in the

graph, and 𝑑𝑎𝑣𝑔 is the average degree (i.e. 2𝑚/𝑛). Empirically, it cannot terminate in two days on a

3-million-edge graph (Amazon0601) [34], due to a large hidden constant factor in time complexity.

The inefficiency of Greedy has driven a plethora of algorithms [21, 22, 24–27, 34, 45] that aim to

reduce the overhead of graph summarization. Shin et al. [34] present an𝑂 (𝑇 ·𝑚) time algorithm for

graph summarization which can scale to billion-scale graphs, where𝑇 is a pre-set iteration number.

Shin et al.’s seminal paradigm has motivated LDME [45] and Slugger [25], two state-of-the-art

algorithms with practical computation time. Those algorithms, however, are far behind in summary

compactness. In particular, Greedy returns a summary whose size is on average 21.7% smaller than

LDME and 30.2% smaller than Slugger (see the experiments in Section 6.2).

In short, no existing graph summarization algorithm can scale to billion-scale graphs while still

providing a summary as compact as Greedy (Navlakha et al.’s greedy approach [30]). Hence, any

practitioner who conducts graph summarization on sizable networks can only sacrifice summary

compactness for efficiency, or vice versa.

Contributions. This paper presents Mags and Mags-DM (Multi-phase algorithms for graph

summarization), and the latter follows a Divide-and-Merge paradigm. In particular, Mags bor-
rows ideas from the Greedy method [30] but significantly improves its efficiency without sacrificing

the summary compactness. This is achieved by a novel algorithm design that can largely reduce

unpromising search and wasted updates in Greedy, while still retaining necessary search space for

a compact summary. In the meantime, Mags-DM adopts the divide-and-merge paradigm of Shin et

al. [34]. We propose a series of novel techniques that can improve the performance of the paradigm,

including an improved dividing strategy, as well as three merging strategies for improving node
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Table 1. Summary of Notations

Notation Definition
G = (V, E) an undirected graph with nodes V and edges E
𝑛; 𝑚 the number of nodes/edges in G (assume𝑚 > 𝑛)

𝑑𝑎𝑣𝑔 the average degree, i.e. 2𝑚/𝑛
𝑃𝑢 the nodes contained in a super-node 𝑢

𝑁𝑢 the neighbor super-nodes of a super-node 𝑢

N𝑢 the neighbors of a node (or super-node) 𝑢 in G
𝑠 (𝑢, 𝑣) the saving of a super-node pair (𝑢, 𝑣), see Equation 4

𝑚ℎ(𝑢, 𝑣) a MinHash-based similarity measure, see Equation 5

𝑇 the number of iterations

𝜃 (𝑡) SWeG’s merge threshold [34]

𝜔 (𝑡) our merge threshold, see Equation 6

selection, similarity measure, and merge threshold. Moreover, Mags and Mags-DM can support

parallel environments.

We evaluate Mags and Mags-DM on a variety of graphs, and experimentally compare them with

the state-of-the-art algorithms for graph summarization, i.e., Greedy [30], LDME [45], and Slugger
[25]. For summary compactness,Mags andMags-DM have a small difference (< 0.1% and < 2.1% on

average respectively) with Greedy when we use small graphs that Greedy can process. In terms of

efficiency, Mags is on average 11.1x faster than LDME and 4.2x faster than Slugger over all datasets
in the experiments. Moreover, ourMags-DM is on average 13.4x faster compared withMags. To our
knowledge, this is the first time that compactness and efficiency are met in graph summarization,

while existing solutions can only achieve state-of-the-art in one of them.

The principal contributions of this paper are as follows:

1. We propose a greedy algorithmMags for graph summarization that runs in𝑂 (𝑇 ·𝑚·(𝑑𝑎𝑣𝑔+log𝑚))
time. Compared with the previous greedy method, it reduces the theoretical and practical time

cost without affecting the summary compactness.

2. We design a divide-and-merge algorithmMags-DM for graph summarization. The method takes

an 𝑂 (𝑇 ·𝑚) running time, and it outperforms existing divide-and-merge methods in summary

compactness and practical efficiency.

3. We devise the parallel implementations of Mags and Mags-DM when shared-memory parallel

computations are available.

4. Extensive experiments on large graphs demonstrate that Mags and Mags-DM achieve state-of-

the-art compactness and efficiency, enabling practical use of graph summarization algorithms.

Organizations.We introduce the problem and existing solutions in Section 2. Then, we propose

two novel methods in Sections 3 and 4. We detail the implementations and parallelism in Section 5.

The experimental results are given in Section 6. We introduce other related works in Section 7 and

conclude the paper in Section 8.

2 PRELIMINARIES
In this section, we first define the graph summarization problem. Next, we present an overview of

the solutions fromNavlakha et al. [30] and Shin et al. [34], and the limitations of the state-of-the-arts.

Table 1 summarizes the notations frequently used in the paper.
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Fig. 1. Graph G
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Fig. 2. Representation 𝑅 = (𝑆,𝐶)

2.1 Problem Definition
Let G = (V, E) be an undirected network with nodes V and edges E , where 𝑛 = |V | and𝑚 = |E |.
Given G, we seek a representation 𝑅 = (𝑆,𝐶) that consists of a summary graph 𝑆 and the set of edge

corrections 𝐶 . The summary graph (𝑃, 𝐸) is built on a set of super-nodes 𝑃 where 𝑃 is a partition
over V (i.e., disjoint subsets of V). Each super-node 𝑢 ∈ 𝑃 represents a set of nodes 𝑃𝑢 in G, and
each super-edge (𝑢, 𝑣) ∈ 𝐸 means all pair of nodes in the cartesian product 𝑃𝑢 × 𝑃𝑣 are linked. The
set of edge corrections𝐶 stores the edges to insert and remove when recreating G from the summary

graph, annotated as ‘+𝑒’ and ‘−𝑒’ respectively for each edge 𝑒 ∈ 𝐶 . Intuitively, the summary graph

(𝑃, 𝐸) finds multiple sets of vertices with similar neighbors and groups them into super-nodes,

while the edge corrections 𝐸 enables a lossless recreation of G from (𝑃, 𝐸).

Example 1. Consider the graph G in Figure 1 and its compact representation 𝑅 in Figure 2. Initially,

G contains 11 edges. After we summarize G into 𝑅, the number of edges drops to 6, i.e., 4 summary

graph edges and 2 edge corrections. The super-edge between {𝑑, 𝑒} and {𝑓 , 𝑔, ℎ} means linking all 6

node pairs among the two sets, while the correction −(𝑒, 𝑓 ) removes the edge (𝑒, 𝑓 ). This correctly
restores the 5 edges between {𝑑, 𝑒} and {𝑓 , 𝑔, ℎ} in graph G. For {𝑐} and {𝑓 , 𝑔, ℎ}, there exists no
super-edge but the correction +(𝑐, 𝑔) restores the edge (𝑐, 𝑔) in G. After we process all super-edges
and corrections as explained above, we can restore G from 𝑅 exactly.

Definition 1 (Lossless Graph Summarization [30]).
• Given: a graph G = (V, E);
• Find: a summary graph 𝑆 = (𝑃, 𝐸) and a set of corrections 𝐶;

• to Minimize: the representation cost of 𝑅 = (𝑆,𝐶), i.e.,
𝑐 (𝑅) = |𝐸 | + |𝐶 |; (1)

• Subject to: G can be losslessly recreated from 𝑅.

In the next section, we show that the problem can be rewritten as follows: Given G, we ask for a

set of super-nodes 𝑃 that minimizes the representation cost 𝑐 (𝑅).

2.2 Optimal Encoding
The best possible set of super-nodes 𝑃 is hard to decide. However, given a fixed 𝑃 , we can easily

decide the optimal encoding, i.e., the best possible sets 𝐸 and 𝐶 with the minimum cost, according

to [30]. Consider two super-nodes 𝑢 and 𝑣 from a set of super-nodes 𝑃 . We define Π𝑢𝑣 = 𝑃𝑢 × 𝑃𝑣 as
the cartesian product between 𝑃𝑢 and 𝑃𝑣 , that is, Π𝑢𝑣 contains all edges of G that may exist between

the two super-nodes. Then, we let 𝐸𝑢𝑣 ⊆ Π𝑢𝑣 be the edges actually exist in the original graph G,
i.e., 𝐸𝑢𝑣 = Π𝑢𝑣 ∩ E . After that, we can encode any 𝐸𝑢𝑣 with the summary and correction structures:

1. if |𝐸𝑢𝑣 | > (1 + |Π𝑢𝑣 |)/2, then we add the super-edge (𝑢, 𝑣) to 𝐸 and add ‘−𝑒’ to 𝐶 for each

𝑒 ∈ Π𝑢𝑣 \ 𝐸𝑢𝑣 ;
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2. if |𝐸𝑢𝑣 | ≤ (1 + |Π𝑢𝑣 |)/2, then we add ‘+𝑒’ to 𝐶 for each 𝑒 ∈ 𝐸𝑢𝑣 .

The costs of the above two ways are |Π𝑢𝑣 | − |𝐸𝑢𝑣 | + 1 and |𝐸𝑢𝑣 | respectively. Such an encoding of

𝐸𝑢𝑣 will always lead to the minimum cost among the two ways, that is,

𝑐𝑢𝑣 = min{|Π𝑢𝑣 | − |𝐸𝑢𝑣 | + 1, |𝐸𝑢𝑣 |}. (2)

Therefore, we decide the optimal encoding of 𝐸 and 𝐶 as follows. Given 𝑃 , for every pair of

super-nodes (𝑢, 𝑣), we add the super-edge to 𝐸 if and only if |𝐸𝑢𝑣 | > (1 + |Π𝑢𝑣 |)/2, and then insert

the corrections into 𝐶 accordingly. Let 𝑁𝑢 be the set of neighbor super-nodes of a super-node 𝑢, i.e.,
𝑁𝑢 = {𝑥 | 𝑥 ∈ 𝑃 ∧ 𝐸𝑢𝑥 ≠ ∅}. Then, based on the optimal encoding, Equation 1 can be rewritten as:

𝑐 (𝑅) =
∑︁
𝑢∈𝑃

∑︁
𝑣∈𝑁𝑢

𝑐𝑢𝑣 . (3)

Thus, the lossless graph summarization problem is equivalent to the following: Given G, we seek
a set of super-nodes 𝑃 that minimizes the cost 𝑐 (𝑅) in Equation 3.

2.3 Navlakha et al.’s Greedy Solution
In a nutshell, Navlakha et al.’s greedy solution [30] (referred to as Greedy) starts with a set of

super-nodes 𝑃 where each super-node contains an individual node, then iteratively merges the

super-node pair (𝑢, 𝑣) that leads to the largest saving 𝑠 (𝑢, 𝑣).
The saving 𝑠 (𝑢, 𝑣) measures the normalized cost reduction after merging super-nodes 𝑢 and

𝑣 . Recall that 𝑁𝑢 is the neighbor super-node set of 𝑢 s.t. the edge set 𝐸𝑢𝑥 is not empty for any

𝑥 ∈ 𝑁𝑢 . Given a super-node 𝑢, we define the cost 𝑐𝑢 as the sum of costs for 𝑢’s neighbor set 𝑁𝑢 , i.e.,

𝑐𝑢 =
∑

𝑥∈𝑁𝑢
𝑐𝑢𝑥 . After that, when we merge 𝑢 and 𝑣 into a new super-node𝑤 , the cost is reduced

by 𝑐𝑢 + 𝑐𝑣 − 𝑐𝑤 , and the saving 𝑠 (𝑢, 𝑣) is defined as the cost reduction divided by the sum of costs

for 𝑢 and 𝑣 before the merge, i.e.,

𝑠 (𝑢, 𝑣) =
𝑐𝑢 + 𝑐𝑣 − 𝑐𝑤

𝑐𝑢 + 𝑐𝑣
. (4)

The saving takes the normalized value instead of the absolute cost reduction, as the latter is

biased to high-degree vertices[30]. By definition, only those pairs with a positive saving can lead

to a cost reduction, and such pairs must share at least one common neighbor, i.e., they are 2 hops

apart. Therefore, Greedy maintains any positive-saving pair that is 2-hop apart, during its iterative

merge of the super-nodes. Specifically, Greedy runs in three steps:

1. Initialization: This phase computes the saving for every 2-hop-apart pair, and then puts those

with a positive saving into a priority queue 𝐻 . It also initializes the set of super-nodes 𝑃 where

each super-node contains a single node.

2. Greedy Merge: This phase iteratively merges the pair (𝑢, 𝑣) with the largest saving. After each

merge, it iterates over any pair (𝑥,𝑦) affected by the merge, and then re-computes its saving

𝑠 (𝑥,𝑦) and updates it in 𝐻 . The process terminates when there is no positive-saving pair in 𝐻 .

3. Output: This phase decides 𝑅 from the set of super-nodes 𝑃 (by Section 2.2) and returns 𝑅 as

the final result, where 𝑃 is obtained from the greedy merge.

Greedy is concise in methodology, but it incurs prohibitive overheads due to the 𝑂 (𝑛 · 𝑑𝑎𝑣𝑔3 ·
(𝑑𝑎𝑣𝑔 + log𝑚)) time complexity [30], where 𝑑𝑎𝑣𝑔 is the average degree of the input graph, i.e., 2𝑚/𝑛.
The saving update of Step 2 dominates the overall time cost. In particular, when merging (𝑢, 𝑣)
into 𝑤 , Greedy iterates over 𝑥 ∈ {𝑤} ∪ 𝑁𝑤 (1-hop) and any 𝑦 in 2 hops. This identifies any pair

(𝑥,𝑦) affected by the merge, and costs roughly 3-hops. Then, for any (𝑥,𝑦) visited, it re-computes
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𝑠 (𝑥,𝑦) by iterating over the neighbors of 𝑥 and 𝑦 (one more hop), and it also updates the saving of

(𝑥,𝑦) in 𝐻 using log |𝐻 | time. Note that we have |𝐻 | ≈ 𝑛 · 𝑑𝑎𝑣𝑔2, i.e., 𝐻 contains the pairs between

a node and any node in its 2-hop neighborhood. In summary, the saving update after each merge

requires 𝑂 (𝑑𝑎𝑣𝑔3 · (𝑑𝑎𝑣𝑔 + log(𝑛 · 𝑑𝑎𝑣𝑔2))) time, and there are at most 𝑛 such merges. This leads to

an 𝑂 (𝑛 · 𝑑𝑎𝑣𝑔3 · (𝑑𝑎𝑣𝑔 + log𝑚)) time complexity.

2.4 Shin et al.’s Divide-and-Merge Solution
Shin et al. overcome the inefficiency of Greedy and propose a new method called SWeG [34]. Similar

to the initialization of Greedy, SWeG starts with a set of super-nodes 𝑃 where each super-node

contains a single node. Then, SWeG runs in 𝑇 rounds, and the 𝑡-th round consists of two steps:

1. Dividing: This phase divides all super-nodes into disjoint groups 𝑆 (1) , · · · , 𝑆 (𝑑 ) , each of which

contains a set of super-nodes with similar connectivity.

2. Merging: This phase merges some super-node pairs within each group. For each group 𝑆 (𝑖 ) , it
iteratively removes a random node 𝑢 ∈ 𝑆 (𝑖 ) , and then picks the node 𝑣 ∈ 𝑆 (𝑖 ) whose neighbor
set is the most similar to 𝑢 using Super-Jaccard. The pair (𝑢, 𝑣) is merged if the saving 𝑠 (𝑢, 𝑣) is
larger than a threshold 𝜃 (𝑡).
Compared with Greedy, SWeG avoids a great number of saving computations. That is, SWeG

limits the nodes we consider merging with a super-node 𝑢, which shrinks the search scope from

the 2-hop neighborhood to the assigned group. On the other hand, SWeG ensures compactness

by a greedy-like method, i.e., it first merges the pairs with a large saving and defers other pairs to

subsequent rounds. To achieve this, SWeG only merges the pairs with a saving larger than 𝜃 (𝑡) in
the 𝑡-th round, where the merge threshold 𝜃 (𝑡) = 1/(𝑡 + 1) gradually decreases as 𝑡 increases. Shin

et al. show that SWeG runs in𝑂 (𝑇 ·𝑚) time, and that the algorithm can be extended to parallel and

distributed computing [34].

2.5 Limitations of SOTA Solutions
Due to the efficiency of SWeG [34], this seminal work has motivated LDME [45] and Slugger [25],
two state-of-the-art graph summarization algorithms with practical overheads built on SWeG.
LDME and Slugger can process graphs of near billion scale, but they cannot output a compact

summary like Greedy. Specifically, Greedy returns a summary that is on average 21.7% smaller

than LDME and 30.2% smaller than Slugger , when we run the methods on small graphs that Greedy
can process (Section 6.2). On the other hand, Greedy is not practical for large graphs, e.g., Greedy
cannot terminate in two days on a 3-million-edge graph (Amazon0601) [34]. In summary, despite

a large volume of existing works for graph summarization, none of them can efficiently process

large graphs while returning a summary that is as compact as Greedy.
To bridge the compactness and efficiency for graph summarization, we propose two novel

solutions: a greedy solution Mags that scales Greedy’s paradigm [30] to billion-scale graphs; a

divide-and-merge solution Mags-DM that adopts SWeG’s paradigm [34] and returns a highly

compact summary in a much shorter time.

3 PROPOSED GREEDY METHOD
As we mention in Section 2.5, Greedy [30] incurs prohibitive computation overheads but returns a

highly compact summary. The main reason for Greedy’s inefficiency is that it computes the saving

of any pair of nodes with 2-hop apart, and it updates the saving of any affected pair after every

merge. Intuitively, most of those pairs are unpromising and most of the saving updates are wasted,
since we are only interested in promising pairs (whose saving is high) and their saving updates.
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Algorithm 1: Mags (G,𝑇 , 𝑘)
𝐶𝑃 ← Generate up to 𝑘 · 𝑛 candidate pairs; // Alg. 21

Initialize a set of super-nodes 𝑃 ← {{𝑢} | 𝑢 ∈ V};2

for 𝑡 = 1..𝑇 do // Alg. 33

Select a set of high-saving pairs from 𝐶𝑃 ; Merge them in 𝑃 ;4

Update saving for any pair in 𝐶𝑃 affected by the merges;5

Decide the optimal 𝑅 from 𝑃 ; // Alg. 46

return 𝑅;7

This section presents Mags, a greedy method that borrows ideas from Greedy [30] but avoids its

inefficiency with a novel algorithm design. Algorithm 1 outlines the basic idea of Mags. At a high
level, Mags consists of three phases as follows:

1. Candidate Generation (Algorithm 2). This phase generates 𝑘 · 𝑛 candidate pairs. For each

node 𝑢 ∈ V , we generate 𝑘 candidate pairs that both contain 𝑢 and provide a high saving.

2. Greedy Merge (Algorithm 3). This phase repeats a greedy merge for 𝑇 iterations. The 𝑡-th

iteration merges a set of candidate pairs, and then updates saving for any candidate pair that is

affected by the merges.

3. Output (Algorithm 4). This phase decides the optimal 𝑅 from the set of super-nodes 𝑃 ,

according to the method we described in Section 2.2.

The main drawback of Greedy is that it considers plenty of node pairs that are not promising

to merge, and it frequently updates the saving of unpromising pairs during the greedy merge. In

comparison, our Mags uses the candidate generation phase to focus on promising (candidate) pairs

rather than unpromising ones, and uses a new design of greedy merge phase to reduce both the

times of saving updates and the updates of unpromising node pairs.

Different from Greedy’s initialization phase, the candidate generation phase of Mags samples a

pre-set number (i.e., 𝑘) of high-saving candidate pairs for each node, instead of taking any node in

2-hops as a candidate. This avoids the unpromising pair issue in Greedy, because we ensure that
the number of candidate pairs is up to 𝑘 · 𝑛 while still retaining a sufficient number of promising

pairs. Nevertheless, it is challenging to select promising candidate pairs from all 2-hop-apart pairs.

To this end, we design an efficient algorithm for generating candidate pairs (Algorithm 2).

Compared with Greedy, Mags largely reduces the times of saving updates and the number of

pairs to update in each saving update. Recall that Greedy updates the saving of all 2-hop-apart pairs

(up to 𝑛 × 𝑑𝑎𝑣𝑔2 pairs) after each merge (up to 𝑛 times). Meanwhile, Mags updates the saving of

candidate pairs (up to 𝑛 × 𝑘 pairs) in each iteration (up to 𝑇 times). As a result, Mags is much faster

than Greedy while it keeps the high-quality merges of Greedy.
In what follows, we detail the candidate generation phase ofMags, followed by the greedy merge

phase, and then the output phase.

3.1 Candidate Generation Phase
We aim to generate 𝑘 pairs for each node 𝑢 such that they contain 𝑢 and provide a high saving. A

naive approach is to compute saving 𝑠 (𝑢, 𝑣) for any 𝑣 from 𝑢’s 2-hop neighborhood, and then select

the top-𝑘 pairs with the highest saving. This approach takes 𝑂 (𝑛 · 𝑑2𝑎𝑣𝑔 · (𝑑𝑎𝑣𝑔 + log𝑘)) time. In

particular, for any node𝑢, we iterate over any 𝑣 that is 2-hop apart from𝑢, and then compute saving

𝑠 (𝑢, 𝑣) in 𝑂 (𝑑𝑎𝑣𝑔) time and insert the pair into a heap in 𝑂 (log𝑘) time, where the heap maintains
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Algorithm 2: CandidateGeneration (G, 𝑘)

Initialize ℎ hash functions 𝑓 (1) , · · · , 𝑓 (ℎ) ;1

Compute MinHash 𝑓
(𝑖 )
min
(𝑢) for each 𝑢 ∈ V and each 𝑖 = 1..ℎ;2

Initialize a candidate pair set 𝐶𝑃 ← ∅;3

for each 𝑢 ∈ V do4

Sample a random subset 𝑆 of 𝑏 nodes from N𝑢 ;5

Let 2𝐻𝑜𝑝 ← N𝑢 ∪
⋃

𝑤∈𝑆 N𝑤 ;6

for each 𝑣 ∈ 2𝐻𝑜𝑝 do7

Compute𝑚ℎ(𝑢, 𝑣) by MinHash (Equation 5);8

Select 𝑘 nodes with the highest𝑚ℎ(𝑢, 𝑣);9

Put (𝑢, 𝑣) into 𝐶𝑃 for each selected 𝑣 ;10

return 𝐶𝑃 ;11

the top-𝑘 pairs. Such a naive approach is cost-prohibitive, so we design an improved algorithm that

can drastically speed up the candidate generation.

Algorithm 2 presents the candidate generation phase of Mags. We let N𝑢 be the neighbor set of

a node 𝑢 in the original graph, i.e., N𝑢 = {𝑣 | (𝑢, 𝑣) ∈ E}. Given a node 𝑢, instead of considering all

2-hop neighbors, we sample a subset of 2-hop neighbors (2𝐻𝑜𝑝 in Line 6) that are likely to provide

a high saving when merging with 𝑢. After that, we use a MinHash-based [6] scoring𝑚ℎ(𝑢, 𝑣) to
select 𝑘 nodes from 2𝐻𝑜𝑝 , and then insert (𝑢, 𝑣) into 𝐶𝑃 for any selected 𝑣 (Lines 9-10). In other

words, Algorithm 2 speeds up the candidate generation by two strategies: (i) sampling promising

nodes from the 2-hop neighbors, and (ii) approximating the exact saving by the Jaccard similarity

and MinHash (Jaccard is highly correlated with saving as we show later).

Intuitively, Algorithm 2 works as follows. For each node 𝑢, we sample 𝑘 nodes with the largest

value of𝑚ℎ(𝑢, 𝑣) from the 2-hop neighbors of 𝑢 (i.e. 2𝐻𝑜𝑝 in Algorithm 3), where𝑚ℎ(𝑢, 𝑣) is the
empirical probability that 𝑢 and 𝑣 will have the same MinHash value of neighbor set among ℎ hash

functions. This empirical probability is an unbiased estimation of the Jaccard similarity between

the neighbor sets of 𝑢 and 𝑣 . Therefore, these 𝑘 nodes are very likely to be similar to 𝑢, and we add

a candidate pair (𝑢, 𝑣) for any 𝑣 from these 𝑘 nodes.

In Lines 5-6, we randomly sample 𝑏 neighbors of 𝑢 (i.e., 𝑆). Then, we unionize 𝑢’s neighbor set

and the neighbor sets of each node in 𝑆 , and take this union (i.e., 2𝐻𝑜𝑝) as an approximation of 𝑢’s

2-hop neighbors. Compared with directly obtaining the 2-hop neighbors of 𝑢, the sampling above

reduces the number of neighbor sets to unionize from |N𝑢 | + 1 to 𝑏 + 1. Meanwhile, the sampling

will retain the nodes whose neighbor set is similar to 𝑢 with a high probability, and we formalize

this idea with the following theorem:

Theorem 1. Given two nodes 𝑢 and 𝑣 , we assume that the Jaccard similarity between N𝑢 and N𝑣

equals to 𝑝 . Let 2𝐻𝑜𝑝 (𝑥) be the 2𝐻𝑜𝑝 (Algorithm 2 Line 6) when 𝑢 = 𝑥 . Then, the following condition
holds with at least 1 − (1 − 𝑝)2𝑏 probability:

𝑢 ∈ 2𝐻𝑜𝑝 (𝑣) ∨ 𝑣 ∈ 2𝐻𝑜𝑝 (𝑢).

Proof. The Jaccard similarity between N𝑢 and N𝑣 is defined as 𝐽 (N𝑢,N𝑣) = |N𝑢 ∩N𝑣 |/|N𝑢 ∪
N𝑣 | = 𝑝 , and it follows that |N𝑢 ∩N𝑣 |/|N𝑢 | ≥ 𝑝 . If we sample a node 𝑤 from N𝑢 , then 𝑣 ∈ N𝑤

(i.e.,𝑤 ∈ |N𝑢 ∩N𝑣 |) holds with probability at least 𝑝 . If we sample a subset 𝑆 of ℎ nodes from N𝑢 ,

then we have 𝑣 ∈ 2𝐻𝑜𝑝 (𝑢) (i.e., 𝑣 ∈ ⋃𝑤∈𝑆 N𝑤) with probability at least 1 − (1 − 𝑝)𝑏 . Similarly, we
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have 𝑢 ∈ 2𝐻𝑜𝑝 (𝑣) with probability at least 1 − (1 − 𝑝)𝑏 . Therefore, the condition 𝑢 ∈ 2𝐻𝑜𝑝 (𝑣) or
𝑣 ∈ 2𝐻𝑜𝑝 (𝑢) holds with at least 1 − (1 − 𝑝)2𝑏 probability. □

By Theorem 1, given two nodes𝑢 and 𝑣 , if the Jaccard similarity between N𝑢 and N𝑣 is non-trivial,

then Algorithm 2 identifies (𝑢, 𝑣) as a candidate pair (Lines 5-6) with a high probability. We set

𝑏 = 5 empirically, as it retains a pair whose Jaccard similarity is 0.2 with at least 89% probability.

Our sampling strategy is effective in practice as the probability bound in Theorem 1 is loose, e.g.,

|N𝑢 ∩N𝑣 |/|N𝑢 | can be much larger than 𝑝 , and the nodes similar to 𝑢 are likely to be 𝑢’s neighbors

(i.e., found by N𝑢 in Line 6).

Next, we show the correlations between Jaccard similarity and saving (Equation 4). Given a

pair of super-nodes (𝑢, 𝑣), the Jaccard similarity between N𝑢 and N𝑣 equals 𝐽 (N𝑢,N𝑣) = |N𝑢 ∩
N𝑣 |/|N𝑢 ∪N𝑣 |. Assume that 𝑢 and 𝑣 both contain one single node. By definition (Equation 2), it

follows that 𝑐𝑢 = |N𝑢 | and 𝑐𝑣 = |N𝑣 |. When we merge 𝑢 and 𝑣 into a new node𝑤 , then 𝑐𝑤 equals

|N𝑢 ∪N𝑣 | − 1 if 𝑢 ∈ N𝑣 , and |N𝑢 ∪N𝑣 | otherwise. If roughly taking 𝑐𝑤 ≈ |N𝑢 ∪N𝑣 |, then we can

rewrite Equation 4 as

𝑠 (𝑢, 𝑣) = 𝑐𝑢 + 𝑐𝑣 − 𝑐𝑤
𝑐𝑢 + 𝑐𝑣

≈ |N𝑢 | + |N𝑣 | − |N𝑢 ∪N𝑣 |
|N𝑢 | + |N𝑣 |

=
|N𝑢 ∩N𝑣 |
|N𝑢 | + |N𝑣 |

.

The r.h.s of the above equation is the Dice similarity of N𝑢 and N𝑣 multiplied by two. The Dice

and Jaccard similarity can approximate each other relatively and absolutely [16], so Jaccard is

highly correlated with saving. Therefore, Mags selects 𝑘 nodes (Lines 9-10) with the MinHash, a

technique for estimating the Jaccard similarity.

MinHash Background. The MinHash [6] is a type of Locality Sensitive Hashing (LSH) [19] that

can quickly estimate the Jaccard similarity between sets. Given a hash function 𝑓 (·) that maps a

node to an integer, we define the MinHash of 𝑢 as the minimum hash value among 𝑢’s neighbors,

i.e., 𝑓min (𝑢) = min𝑣∈N𝑢
{𝑓 (𝑣)}. Notably, the Jaccard similarity between two sets is equal to the

probability of identical MinHash, that is, Pr{𝑓min (𝑢) = 𝑓min (𝑣)} = 𝐽 (N𝑢,N𝑣).
Therefore, we can estimate Jaccard by the empirical probability of identical MinHash. In particular,

given ℎ hash functions 𝑓 (1) , · · · , 𝑓 (ℎ) , we define𝑚ℎ(𝑢, 𝑣) as the empirical probability of identical

MinHash among ℎ functions, i.e.,

𝑚ℎ(𝑢, 𝑣) =
1

ℎ

ℎ∑︁
𝑖=1

[
𝑓
(𝑖 )
min
(𝑢) = 𝑓

(𝑖 )
min
(𝑣)

]
. (5)

Here, the notion [·] returns 0 if the condition within is true, and 0 otherwise. By the fact that

Pr{𝑓min (𝑢) = 𝑓min (𝑣)} = 𝐽 (N𝑢,N𝑣), it follows that the expectation E [𝑚ℎ(𝑢, 𝑣)] = 𝐽 (N𝑢,N𝑣), and
we can estimate the Jaccard similarity by𝑚ℎ(𝑢, 𝑣) without bias.
Usage of MinHash and𝑚ℎ(·). Given ℎ, we initialize ℎ hash functions 𝑓 (1) , · · · , 𝑓 (ℎ) (Line 1), and
each function is a permutation of 1, · · · , 𝑛. Then, we iterate over every hash function 𝑓 (𝑖 ) , and

compute the MinHash 𝑓
(𝑖 )
min
(𝑢) for each node 𝑢 (Line 2). After that, Line 8 can compute𝑚ℎ(·) with

the MinHash according to Equation 5, where each estimation of𝑚ℎ(·) takes 𝑂 (ℎ) time.

The purpose of LSH design in Mags is different from existing solutions. In short, Mags uses LSH
to generate high-quality candidate node pairs for the greedy merge, while LDME [45] (and SWeG
[34]) uses LSH to divide nodes into disjoint groups and then merge the nodes in each group with

Super-Jaccard. The LSH in ourMags can help produce more compact summaries, becauseMags will
output a summary with similar compactness to Greedy as long as Mags can generate high-quality

candidate pairs with LSH and greedily merge the candidate pairs (like Greedy).
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Algorithm 3: GreedyMerge (G,𝑇 ,𝐶𝑃 )
𝑃 ← {{𝑢} | 𝑢 ∈ V}; 𝐻 ← a priority queue (key=saving);1

for each (𝑢, 𝑣) ∈ 𝐶𝑃 do Insert (𝑠 (𝑢, 𝑣), 𝑢, 𝑣) into 𝐻 ;2

for 𝑡 = 1..𝑇 do3

for each (𝑠,𝑢, 𝑣) ∈ 𝐻 in deceasing 𝑠 do4

Go on when 𝑠 ≥ 𝜔 (𝑡), otherwise break;5

if renewed 𝑠 (𝑢, 𝑣) ≥ 𝜔 (𝑡) then6

Merge 𝑢 and 𝑣 into𝑤 in 𝑃 , where𝑤 ← 𝑢 ∪ 𝑣 ;7

Replace 𝑢 and 𝑣 by𝑤 in 𝐶𝑃 and 𝐻 ;8

Let𝑈 be the union of {𝑤} ∪ 𝑁𝑤 for any𝑤 from Line 7;9

for each 𝑢 ∈ 𝑈 do10

for each (𝑢, 𝑣) ∈ 𝐶𝑃 do11

Remove (𝑠,𝑢, 𝑣) ∈ 𝐻 , and insert back (𝑠 (𝑢, 𝑣), 𝑢, 𝑣);12

return 𝑃 ;13

Theorem 2. Given small constants 𝑏 and ℎ, and we set 𝑘 = 𝑐 · 𝑑𝑎𝑣𝑔 where 𝑐 is constant, Algorithm
2 runs in 𝑂 (𝑚 · log𝑑𝑎𝑣𝑔) time.

Proof. Lines 1-2 take 𝑂 (ℎ𝑚) time, as it initializes ℎ hash functions (node permutations) and

computes the MinHash of each node in 𝑂 (𝑚) time for each function. Lines 5-6 run in 𝑂 (𝑏𝑛 · 𝑑𝑎𝑣𝑔)
time. Notice that we union 𝑏 + 1 neighbor sets for each node (Line 6), and the expected size of

2𝐻𝑜𝑝 is (𝑏 + 1) · 𝑑𝑎𝑣𝑔. After that, Lines 7-10 require 𝑂 (𝑏𝑛 · 𝑑𝑎𝑣𝑔 · (ℎ + log𝑘)) time. That is, for each

𝑢 and each 𝑣 ∈ 2𝐻𝑜𝑝 , we compute𝑚ℎ(𝑢, 𝑣) and maintain the top-𝑘 by a heap in 𝑂 (ℎ + log𝑘) time.

Overall, the time complexity is𝑂 (ℎ𝑚 +𝑏𝑛 · 𝑑𝑎𝑣𝑔 · (ℎ + log𝑘)). By setting 𝑘 = 𝑐 · 𝑑𝑎𝑣𝑔, and 𝑏 and ℎ as

small constants, we can rewrite the time complexity as 𝑂 (𝑚 · log𝑑𝑎𝑣𝑔). □

3.2 Greedy Merge Phase
Algorithm 3 presents the greedy merge phase of Mags. Given G, the number of iterations 𝑇 , and a

set of candidate pairs 𝐶𝑃 , the algorithm aims to return a set of super-nodes 𝑃 that minimizes the

representation cost. Lines 1-2 initialize a set of super-nodes 𝑃 where each super-node contains a

single node, and a priority queue𝐻 that contains every candidate pair and its saving. The subsequent

part of the algorithm consists of 𝑇 iterations (Lines 3-12), and each iteration contains two parts:

The first part of the iteration (Lines 4-8) merges a set of candidate pairs whose saving is larger

than 𝜔 (𝑡) (this threshold is defined later). We merge pairs in decreasing order of saving 𝑠 (Line

4). As we defer saving updates to the second part of the iteration (Lines 9-12), the saving stored

in 𝐻 (𝑠 in Line 5) may be out-of-date due to the previous merges. To avoid this issue, if and only

if the saving since the last update (𝑠 in Line 5) and the renewed saving 𝑠 (𝑢, 𝑣) in Line 6 are both

larger than 𝜔 (𝑡), we merge the pair in 𝑃 , 𝐶𝑃 and 𝐻 (Lines 7-8). Note that if a qualified (𝑢, 𝑣) pair
(𝑠 (𝑢, 𝑣) > 𝜔 (𝑡)) is skipped by Line 5 due to the old 𝑠 value, it will still be considered in the later

iterations as 𝜔 (𝑡) decreases.
In the second part of the iteration (Lines 9-12), we update saving for the candidate pairs that are

affected by the merges in the first part. Assume that 𝑢 and 𝑣 are merged into a new super-node

𝑤 . Similar to Greedy, the saving of a pair (𝑥,𝑦) may change when 𝑥 or 𝑦 is contained in 𝑤 ’s

neighborhood, i.e., {𝑤} ∪ 𝑁𝑤 . We put {𝑤} ∪ 𝑁𝑤 into 𝑈 for any newly formed𝑤 (Line 9), and then

update saving for any candidate pair containing 𝑢 ∈ 𝑈 (Lines 10-12).
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Algorithm 4: Output (G, 𝑃 )
𝐸 ← ∅; 𝐶 ← ∅;1

for each super-node 𝑢 ∈ 𝑃 do2

for each super-node 𝑣 ∈ 𝑁𝑢 (i.e., 𝐸𝑢𝑣 ≠ ∅) do3

if |𝐸𝑢𝑣 | > ( |Π𝑢𝑣 | + 1)/2 then4

Add ‘−𝑒’ to 𝐶 for 𝑒 ∈ Π𝑢𝑣 \ 𝐸𝑢𝑣 ; Add (𝑢, 𝑣) to 𝐸;5

else Add ‘+𝑒’ to 𝐶 for 𝑒 ∈ 𝐸𝑢𝑣 ;6

return 𝑅 ← (𝑆,𝐶) where 𝑆 = (𝑃, 𝐸);7

Merge Threshold. Equation 6 formulates the merge threshold 𝜔 (𝑡) used in Algorithm 3. We set

𝜔 (1) = 0.5, as the saving 𝑠 (𝑢, 𝑣) is equal to (and is up to) 0.5 when 𝑢 and 𝑣 have the identical

neighbor set (Equation 4). We empirically set 𝜔 (𝑇 ) = 0.005, as it implies that 𝑢 and 𝑣 only share 1%

of their neighbors. When 1 < 𝑡 < 𝑇 , we set up a geometric sequence with a ratio 𝑟 =
𝑇 −1√

0.01.

𝜔 (𝑡) =
{
0.5 × 𝑟 𝑡−1 if 𝑡 < 𝑇 , where 𝑟 =

𝑇 −1√
0.01

0.005 if 𝑡 = 𝑇
(6)

The merge threshold gradually decreases as 𝑡 increases, e.g., when𝑇 = 50, 𝜔 (𝑡) forms a sequence

0.5, 0.455, 0.414, · · · , 0.005 (𝑟 ≈ 0.912 in Equation 6). Recall that we only merge a pair whose saving

is larger than 𝜔 (𝑡) in the 𝑡-th iteration. Using our well-designed merge threshold, Mags can merge

the high-saving pairs with a moderate order of decreasing thresholds.

Theorem 3. Given we set 𝑘 = 𝑐 · 𝑑𝑎𝑣𝑔 where 𝑐 is a small constant, Algorithm 3 runs in 𝑂 (𝑇 ·𝑚 ·
(𝑑𝑎𝑣𝑔 + log𝑚)) time complexity.

Proof. Lines 1-2 require 𝑂 ( |𝐻 | · (𝑑𝑎𝑣𝑔 + log |𝐻 |)) time, as it takes 𝑂 (𝑑𝑎𝑣𝑔) time to compute the

saving of a candidate pair and 𝑂 (log |𝐻 |) time to put the pair into 𝐻 . After that, the 𝑇 iterations

take𝑂 (𝑇 · |𝐻 | · (𝑑𝑎𝑣𝑔 + log |𝐻 |)) time. Specifically, in each iteration, we re-compute the saving of any

pair in 𝐻 (Lines 6 and 12) by iterating over the neighbors (one hop), and then update the saving in

𝐻 using𝑂 (log |𝐻 |) time (Line 12). These saving computations take𝑂 (𝑇 · |𝐻 | · (𝑑𝑎𝑣𝑔 + log |𝐻 |)) time.

The cost of merges (Lines 7-8) is𝑂 (𝑛 · (𝑑𝑎𝑣𝑔+𝑘)), as there are up to𝑛merges and each merge requires

𝑂 (𝑑𝑎𝑣𝑔 +𝑘) time. The overall time is𝑂 (𝑇 · |𝐻 | · (𝑑𝑎𝑣𝑔 + log |𝐻 |)). By setting 𝑘 = 𝑐 ·𝑑𝑎𝑣𝑔 , and the fact
that |𝐻 | ≤ 𝑘 ·𝑛 = 𝑐 ·𝑑𝑎𝑣𝑔 ·𝑛 = 𝑐 ·𝑚, we can rewrite the time complexity to𝑂 (𝑇 ·𝑚 · (𝑑𝑎𝑣𝑔+log𝑚)). □

3.3 Output Phase
Algorithm 4 decides the optimal𝑅 from 𝑃 (see Section 2.2). That is, if and only if |𝐸𝑢𝑣 | > ( |Π𝑢𝑣 |+1)/2,
we add the super-edge (𝑢, 𝑣) to 𝐸 and add correction ‘−𝑒’ for each 𝑒 ∈ Π𝑢𝑣 \ 𝐸𝑢𝑣 ; otherwise, we add
correction ‘+𝑒’ for each 𝑒 ∈ 𝐸𝑢𝑣 .

Theorem 4. Algorithm 4 runs in 𝑂 (𝑚) time.

Proof. The number of operations in Lines 4-6 equals 2 × 𝑐 (𝑅), because each super-edge (resp.

each correction) has at most 2 copies. By the fact that the representation cost is no more than the

original cost (i.e., 𝑐 (𝑅) ≤ 𝑚), Algorithm 4 takes 𝑂 (𝑚) running time. □

3.4 Putting Them Together
In summary, Mags algorithm works as follows. Mags needs two parameters 𝑘 and 𝑇 , where 𝑘 is

decided from 𝑑𝑎𝑣𝑔, and 𝑇 is user-defined. Given G, 𝑘 , and 𝑇 , Mags first feeds G and 𝑘 as input
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to Algorithm 2, and obtains a set of candidate pairs 𝐶𝑃 in return. Then, Mags gives G, 𝑇 , and
𝐶𝑃 as input to Algorithm 3, and receives a set of super-nodes 𝑃 . Finally, Mags decides the best
representation 𝑅 from 𝑃 using Algorithm 4, and returns 𝑅 as the final result.

By Theorems 2, 3, and 4, Mags takes an 𝑂 (𝑇 ·𝑚 · (𝑑𝑎𝑣𝑔 + log𝑚)) running time when we set

parameters according to the theorems. In practice, we set 𝑏 = 5 and ℎ = min{10 · 𝑑𝑎𝑣𝑔, 50} for
Algorithm 2, and set 𝑘 ← min{5 · 𝑑𝑎𝑣𝑔, 30} for Algorithm 3. Note that these parameters have a

limited impact on the result, as shown in Section 6.5. The only parameter that users need to specify

is 𝑇 , and a larger 𝑇 implies a more compact summary and higher time overhead.

Recall thatGreedy [30] runs in𝑂 (𝑛 ·𝑑𝑎𝑣𝑔3 · (𝑑𝑎𝑣𝑔+log𝑚)) time and it provides the highest summary

compactness. On the theory side, ourMags improves the time complexity to𝑂 (𝑇 ·𝑚 · (𝑑𝑎𝑣𝑔 + log𝑚)).
On the practice side, Mags can scale to billion-scale graphs while providing a summary as compact

as Greedy (Section 6.3).

4 PROPOSED DIVIDE-AND-MERGE METHOD
Shin et al.’s divide-and-merge solution [34] (i.e., SWeG) runs in practical time but the summary

of which is less compact. In what follows, we first revisit SWeG and present our insights on the

method. After that, we describe our proposed Mags-DM method.

Recall in Section 2.4 that SWeG runs in 𝑇 iterations, and the 𝑡-th iteration consists of two phases.

The dividing phase generates a hash function 𝑓 (·) and computes the MinHash 𝑓min (𝑢) for each
super-node 𝑢, then it divides super-nodes into groups 𝑆 (1) , · · · , 𝑆 (𝑑 ) by the MinHash value (see

Section 3.1 for MinHash). The merging phase works as follows. For each group 𝑆 (𝑖 ) , it iteratively
removes a random node 𝑢 ∈ 𝑆 (𝑖 ) from the group, and picks the node 𝑣 ∈ 𝑆 (𝑖 ) with the highest

Super-Jaccard similarity to 𝑢, and then merge (𝑢, 𝑣) if its saving 𝑠 (𝑢, 𝑣) is larger than a merge

threshold 𝜃 (𝑡) = 1/(1 + 𝑡).
Despite SWeG’s efficiency, the method is sub-optimal in summary compactness. Recall that

SWeG divides nodes into groups by MinHash in the dividing phase, and selects promising pairs by

Super-Jaccard in the merging phase. MinHash and Super-Jaccard are both approximate measures of
saving, and their precision is critical to the summary compactness of the algorithm. To enhance

these approximate measures in precision and efficiency, ourMags-DM substantially improves SWeG
in dividing and merging strategies:

• Merging Strategy 1 (Node Selection). During the merging phase, given a group and a random

node 𝑢 in the group, SWeG picks the node 𝑣 that is the most similar to 𝑢, and then attempt to

merge the pair (𝑢, 𝑣). In comparison, Mags-DM selects 𝑏 nodes that are the most similar to 𝑢,

and then the node 𝑣 that provides the largest saving 𝑠 (𝑢, 𝑣) among the 𝑏 nodes. This improves

the summary compactness of the algorithm.

• Merging Strategy 2 (SimilarityMeasure).Mags-DM uses aMinHash-based similaritymeasure

𝑚ℎ(·) (Eq. 5) instead of SWeG’s Super-Jaccard. This new measure provides a more compact

summary and is faster to compute.

• Merging Strategy 3 (Merge Threshold). Mags-DM adopts our merge threshold 𝜔 (𝑡) (Section
3.2) rather than SWeG’s 𝜃 (𝑡), and 𝜔 (𝑡) provides a more compact summary.

• Dividing Strategy: We divide the nodes with a set of hash functions and ensure that the

maximum size of each group is not large, while SWeG divides nodes by a single hash function.

This improves the efficiency of the algorithm on large graphs.
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Algorithm 5: Mags-DM (G,𝑇 )

Initialize ℎ hash functions 𝑓 (1) , · · · , 𝑓 (ℎ) ;1

Compute MinHash 𝑓
(𝑖 )
min
(𝑢) for each 𝑢 ∈ V and each 𝑖 = 1..ℎ;2

Initialize a set of super-nodes 𝑃 ← {{𝑢} | 𝑢 ∈ V};3

for 𝑡 = 1..𝑇 do4

Divide the nodes in 𝑃 into 𝑆 (1) , · · · , 𝑆 (𝑑 ) by MinHash;5

for each 𝑆 (𝑖 ) ∈ {𝑆 (1) , · · · , 𝑆 (𝑑 ) } do6

while 𝑆 (𝑖 ) is non-empty do7

Pick (and remove) a random node 𝑢 from 𝑆 (𝑖 ) ;8

Let 𝑄 be the 𝑏 nodes from 𝑆 (𝑖 ) whose𝑚ℎ(𝑢,𝑤) (Equation 5) is the largest for any9

𝑤 ∈ 𝑄 ;
Let 𝑣 ← argmax𝑣∈𝑄 𝑠 (𝑢, 𝑣);10

if 𝑠 (𝑢, 𝑣) ≥ 𝜔 (𝑡) then11

Merge 𝑢 and 𝑣 into𝑤 in 𝑃 , where𝑤 ← 𝑢 ∪ 𝑣 ;12

for 𝑖 = 1..ℎ do 𝑓
(𝑖 )
min
(𝑤) ← min{𝑓 (𝑖 )

min
(𝑢), 𝑓 (𝑖 )

min
(𝑣)};13

Decide the optimal 𝑅 from 𝑃 ; // Alg. 414

return 𝑅;15

4.1 Our Method: Mags-DM
This section presents Mags-DM , a graph summarization method built on the paradigm of SWeG
but aims to improve its performance. Algorithm 5 overviews the pseudo-code of Mags-DM . The

algorithm runs 𝑇 iterations (Line 4), and the 𝑡-th iteration contains two phases:

1. Dividing (Line 5): This phase divides the nodes into groups 𝑆 (1) , · · · , 𝑆 (𝑑 ) by the MinHash

values of multiple hash functions, such that the size of each group is not large. We initialize

hash functions and the MinHash before the iterations (Lines 1-2), and dynamically update them

during the merges (Line 13).

2. Merging (Lines 6-13): This phase iterates over each group. For each group 𝑆 (𝑖 ) , it iteratively
picks a random node𝑢, then selects 𝑏 nodes that are the most similar to𝑢 by𝑚ℎ(𝑢,𝑤) (Equation
5) and the node 𝑣 with the largest saving from the 𝑏 nodes. After that, we merge 𝑢 and 𝑣 if the

saving 𝑠 (𝑢, 𝑣) > 𝜔 (𝑡), where 𝜔 (𝑡) is the merge threshold (Eq. 6).

Usage of MinHash. The algorithm first initializes ℎ hash functions and the MinHash of functions

in Lines 1-2 (see Section 3.1 for MinHash), where each hash function is a permutation of 1, · · · , 𝑛.
Recall that𝑚ℎ(·) (Equation 5) relies on the MinHash values of ℎ hash functions, and the MinHash

is unknown for a newly merged super-node𝑤 (Line 12). In this case, we define the MinHash of a

super-node𝑤 as 𝑓min (𝑤) = min𝑥∈𝑃𝑤 {𝑓min (𝑥)}, and maintain it during the merges. That is, when

we merge 𝑢 and 𝑣 into𝑤 , we take the minimum value of the MinHash of 𝑢 and 𝑣 , and set it to the

MinHash of𝑤 for every hash function (Lines 13-13).

Procedure of Dividing Phase. In Line 5, we first generate a random permutation of 𝑓 (1) , · · · , 𝑓 (ℎ) .
Let the id of those functions be 𝑠1, · · · , 𝑠ℎ . Then, we group any node 𝑢 ∈ 𝑃 by the MinHash value

𝑓
(𝑠1 )
min
(𝑢). For those groups whose size is larger than a constant𝑀 (spec.,𝑀 = 500), we recursively

divide the groups using functions 𝑓 (𝑠2 ) (·), · · · , 𝑓 (𝑠10 ) (·), until the size of each group is below 𝑀 .
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Fig. 3. Super-Jaccard would merge {𝑏, 𝑐} with {𝑓 , 𝑔, ℎ}, while our𝑚ℎ(·) would merge {𝑏, 𝑐} with {𝑎}

Note that the recursion depth is limited to a constant (i.e., 10). Such a setting is also adopted in

previous works [24, 25].

Procedure of Merging Phase. During the merging phase, given a group 𝑆 (𝑖 ) and a random node 𝑢

from 𝑆 (𝑖 ) , we identify a node 𝑣 that is the most similar to 𝑢 as follows. Specifically, we first compute

𝑚ℎ(𝑢,𝑤) by Equation 5 for any𝑤 ∈ 𝑆 (𝑖 ) , then pick the 𝑏 nodes with the largest𝑚ℎ(𝑢,𝑤), and put

them into a set𝑄 (Line 9). After that, we iterate over any 𝑣 ∈ 𝑄 and pick the node 𝑣 with the largest

value of saving 𝑠 (𝑢, 𝑣) (Line 10). In the 𝑡-th iteration, we merge (𝑢, 𝑣) if and only if 𝑠 (𝑢, 𝑣) is larger
than a merge threshold 𝜔 (𝑡).
In Line 11, we use our merge threshold 𝜔 (𝑡) (see Equation 6) rather than SWeG’s 𝜃 (𝑡) [34] ,

as our 𝜔 (𝑡) provides a more compact summary. To explain, 𝜃 (𝑡) = 1/(1 + 𝑡) forms a sequence

0.5, 0.33, 0.25, · · · , 0.0196when𝑇 = 50, while ourmerge threshold𝜔 (𝑡) forms 0.5, 0.455, 0.414, · · · , 0.005
(𝑟 ≈ 0.912 in Equation 6). Intuitively, the algorithm is more likely to merge promising pairs before

unpromising ones when we use 𝜔 (𝑡), as 𝜔 (𝑡) decreases more slowly for small 𝑡 . For example,

assume there are three nodes 𝑢, 𝑣,𝑤 where 𝑠 (𝑢, 𝑣) = 0.46, 𝑠 (𝑢,𝑤) = 0.34, and 𝑠 (𝑢 ∪ 𝑣,𝑤) = −0.05.
Clearly, it is desired to merge (𝑢, 𝑣) and avoid merging (𝑢,𝑤). Due to 𝜃 (2) = 0.33 and the dividing

strategy, SWeG may merge (𝑢,𝑤) before (𝑢, 𝑣) for any 𝑡 ≥ 2. Meanwhile, by 𝜔 (2) = 0.455 and

𝜔 (6) = 0.313, our Mags-DM will only consider merging (𝑢, 𝑣) when 2 ≤ 𝑡 ≤ 5. Our 𝜔 (𝑡) thus
provides a more compact summary compared with SWeG’s 𝜃 (𝑡).
Comparison of Super-Jaccard and𝑚ℎ(·). Given a super-node 𝑢, we let N𝑢 be the neighbor node

set of 𝑢 in the original graph, i.e., N𝑢 = {𝑦 | 𝑥 ∈ 𝑃𝑢 ∧ (𝑥,𝑦) ∈ E}. Then, given super-nodes 𝑢 and 𝑣 ,

the Super-Jaccard [34] of 𝑢 and 𝑣 is defined as

𝑆 𝐽 (𝑢, 𝑣) =

∑
𝑥∈N𝑢∪N𝑣

min{𝑤 (𝑢, 𝑥),𝑤 (𝑣, 𝑥)}∑
𝑥∈N𝑢∪N𝑣

max{𝑤 (𝑢, 𝑥),𝑤 (𝑣, 𝑥)} , (7)

where𝑤 (𝑢, 𝑥) = |{𝑦 ∈ 𝑃𝑢 | {𝑥,𝑦} ∈ E}| is the number of nodes in super-node 𝑢 that is adjacent

to a node 𝑥 ∈ V in the original graph. The Super-Jaccard is a weighted Jaccard similarity of N𝑢 and

N𝑣 , where the weight is specified by𝑤 (𝑢, 𝑥) and𝑤 (𝑣, 𝑥). In comparison, our𝑚ℎ(𝑢, 𝑣) (Eq. 5) is an
unbiased estimator of 𝐽 (N𝑢,N𝑣), that is, the (unweighted) Jaccard similarity between N𝑢 and N𝑣 .

In Mags-DM , we replace the Super-Jaccard by our𝑚ℎ(·), because the Super-Jaccard is biased to

the super-nodes that contain more nodes. In the example below, we show this drawback of the

Super-Jaccard and how it may impair algorithm performance.

Example 2. Assume that we aim to merge the super-node {𝑏, 𝑐} with some other super-nodes in

Figure 3. The best choice is to merge {𝑏, 𝑐}with {𝑎} because they have the same connectivity. But the

Super-Jaccard prefers {𝑓 , 𝑔, ℎ} more, as we have 𝑆 𝐽 ({𝑏, 𝑐}, 𝑎) = 3/6 and 𝑆 𝐽 ({𝑏, 𝑐}, {𝑓 , 𝑔, ℎ}) = 4/6.
Note that {𝑓 , 𝑔, ℎ} contains three nodes and this leads to a weight larger than {𝑎}. In comparison, the

unweighted Jaccard and our𝑚ℎ(·) prefers {𝑎}, that is, 𝐽 ({𝑏, 𝑐}, 𝑎) = 3/3 and 𝐽 ({𝑏, 𝑐}, {𝑓 , 𝑔, ℎ}) = 2/3.
In summary, the Super-Jaccard tends to prioritize some super-nodes with a large number of nodes,

while our𝑚ℎ(·) can provide a better result compared with the Super-Jaccard in practice.

Theorem 5. Given small constants 𝑏 and ℎ, Algorithm 5 runs in 𝑂 (𝑇 ·𝑚) time.
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Proof. Lines 1-2 take𝑂 (ℎ𝑛) time to initialize ℎ hash functions and𝑂 (ℎ𝑚) time for the MinHash.

The dividing phase (Line 5) requires 𝑂 (𝑛) time, as 𝑃 contains at most 𝑛 super-nodes and the

MinHash values are available. Let 𝑠𝑚𝑎𝑥 be the maximum size of the group (Line 6), i.e., 𝑠𝑚𝑎𝑥 =

max{|𝑆 (𝑖 ) |, · · · , |𝑆 (𝑑 ) |}. During the merge phase (Lines 6-13), for each 𝑢, Line 9 computes𝑚ℎ(𝑢,𝑤)
for any𝑤 ∈ 𝑆 (𝑖 ) and maintain the top-𝑏 in𝑂 (𝑠𝑚𝑎𝑥 · (ℎ + log𝑏)) time, then Line 10 takes𝑂 (𝑏 · 𝑑𝑎𝑣𝑔)
time to compute the saving for any 𝑣 ∈ 𝑄 (|𝑄 | ≤ 𝑏), and finally the merge of (𝑢, 𝑣) requires 𝑂 (ℎ)
time (Lines 11-13). Given 𝑢 (Line 8), Lines 9-13 run in 𝑂 (𝑠𝑚𝑎𝑥 · (ℎ + log𝑏) + 𝑏 · 𝑑𝑎𝑣𝑔 + ℎ) time, and

we can rewrite it to 𝑂 (ℎ + 𝑏 · 𝑑𝑎𝑣𝑔) if we divide 𝑃 finely such that the maximum size of each group

(i.e., 𝑠𝑚𝑎𝑥 ) is smaller than a constant. The merge phase will process at most 𝑛 different 𝑢 (Line 8),

thus, the complexity of it is 𝑂 (𝑛 · (ℎ + 𝑏 · 𝑑𝑎𝑣𝑔)). The output phase (Line 14) takes 𝑂 (𝑚) time by

Theorem 4. After summing up the cost of initialization, dividing, merging, and output, the total

time complexity of Algorithm 5 equals 𝑂 (ℎ𝑚 +𝑇𝑛 · (ℎ + 𝑏 · 𝑑𝑎𝑣𝑔)). By setting 𝑏 and ℎ as constants,

we can rewrite the complexity to 𝑂 (𝑇 ·𝑚) time. □

4.2 Putting Them Together
Our Mags-DM needs a user-defined parameter 𝑇 . Given 𝑇 , Algorithm 5 takes 𝑇 as an input, and

returns 𝑅 as the final result. By Theorem 5, Mags-DM runs in 𝑂 (𝑇 ·𝑚) time complexity when we

set the parameters according to the theorem. In practice, we can set 𝑏 = 5 and ℎ = 40 for Algorithm

5. The feasible values of these parameters are within a wide range and they have a limited impact

on the performance, as shown in Section 6.5.

LDME [45] and Slugger [25] are the state-of-the-art works using the divide-and-merge paradigm.

LDME and Slugger are built on SWeG [34] and they both run in 𝑂 (𝑇 ·𝑚) time. In particular, LDME
uses a weighted LSH to find good node merges, while Slugger represents a graph using hierarchical

super-nodes that contain each other and it greedily merges nodes into super-nodes while exploiting

their hierarchy. Different from these works, ourMags-DM improves SWeG with three novel merging

strategies and one dividing strategy (see the beginning of Section 4). As a result, our Mags-DM can

better divide nodes into promising groups and merge high-quality node pair, which leads to a more

compact summary and a higher efficiency (see Section 6.4).

5 IMPLEMENTATION AND PARALLELISM
In this section, we detail the data structures used and the parallel implementations of our algorithms.

5.1 Implementation of Mags
Data Structures ofMags.We implement the set of super-nodes 𝑃 using disjoint set union [38]. For

each super-node 𝑢, we store a table𝑊𝑢 where𝑊𝑢 (𝑣) equals the numbers of edges between 𝑢 and 𝑣

(i.e., |𝐸𝑢𝑣 |). During the merges, we update𝑊 dynamically such that we can quickly compute 𝑐𝑢𝑣
(Equation 2) and 𝑠 (𝑢, 𝑣) (Equation 4) based on𝑊𝑢 and𝑊𝑣 . The candidate pair set𝐶𝑃 is implemented

as a series of tables, where 𝐶𝑃𝑢 stores the candidate pairs containing 𝑢 and 𝐶𝑃𝑢 (𝑣) returns the
saving of the pair (𝑢, 𝑣). As a result, we can quickly update the saving of a given pair (𝑢, 𝑣) in the

priority queue 𝐻 . That is, we can remove the pair from 𝐻 by (𝐶𝑃𝑢 (𝑣), 𝑢, 𝑣) (Algorithm 3 Line 12),

and then insert (𝑠 (𝑢, 𝑣), 𝑢, 𝑣) back into 𝐻 . Each candidate pair (𝑢, 𝑣) is stored in both 𝐶𝑃𝑢 and 𝐶𝑃𝑣 .

Parallel Implementation ofMags. Greedy [30] is hard to make parallel, as every greedy merge

depends on the result of the previous one, forming a dependency chain (see Section 2.3). In

comparison, our Mags processes a batch of merges and saving updates in each iteration, which

makes Mags feasible to parallelize.

There are three steps in Mags. The first step to make parallel is candidate generation (Algorithm

2). We initialize each hash function (Line 1) and its MinHash (Line 2) in parallel, and then initialize
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Table 2. Dataset Statistics

Dataset 𝑛 𝑚 𝑑𝑎𝑣𝑔 Type

Caida (CA) 26,475 53,381 4.0 Internet

Email-Enron (EN) 36,692 183,831 10.0 E-Mail

Brightkite (BK) 58,228 214,078 7.4 Geo-Social

Email-Eu-All (EA) 265,009 364,481 2.8 E-Mail

Slashdot-0922 (SL) 82,168 504,230 12.3 Social

DBLP (DB) 317,080 1,049,866 6.6 Co-author

Amazon0601 (AM) 403,394 2,443,408 12.1 Co-purchase

CNR-2000 (CN) 325,557 2,738,969 16.8 Web

Youtube (YT) 1,134,890 2,987,624 5.3 Social

Skitter (SK) 1,696,415 11,095,298 13.1 Internet

IN-2004 (IN) 1,382,867 13,591,473 19.7 Web

EU-2005 (EU) 862,664 16,138,468 37.4 Web

Eswiki-2013 (ES) 970,327 21,184,931 43.7 Web

LiveJournal (LJ) 3,997,962 34,681,189 17.3 Social

Hollywood-2011 (HO) 1,985,306 114,492,816 115.3 Collaboration

Indochina-2004 (IC) 7,414,758 150,984,819 40.7 Web

UK-2005 (UK) 39,454,463 783,027,125 39.7 Web

IT-2004 (IT) 41,290,648 1,027,474,947 49.8 Web

𝑊𝑢 in parallel for each node 𝑢. After that, we generate candidate pairs for every node 𝑢 ∈ V
concurrently (Line 4), where we put a candidate pair (𝑢, 𝑣) into 𝐶𝑃𝑢 and 𝐶𝑃𝑣 with lock protection

(Line 10). Then, we insert all candidate pairs into a priority queue 𝐻 serially. The second step is

greedy merge (Algorithm 3). We first group all pairs with 𝑠 ≥ 𝜔 (𝑡) by connectivity (Line 4), and

then decide the pairs to merge concurrently for each group (Lines 6-8). During the merges among

Lines 4-8, the update of 𝑃 is serial, the updates of𝑊𝑢 and𝑊𝑣 require lock protections, while we

update 𝐶𝑃 and 𝐻 in a batch after handling all node merges. Next, we update the saving for each

𝑢 ∈ 𝑈 in parallel (Line 10). Given 𝑢 and 𝑣 ∈ 𝐶𝑃𝑢 , we compute the saving 𝑠 (𝑢, 𝑣) and update it in the

candidate pair tables (𝐶𝑃𝑢 and 𝐶𝑃𝑣) and the priority queue 𝐻 . In practice, we only update 𝐶𝑃𝑢 in

real-time, as this leads to conflict-free updates for different 𝑢 ∈ 𝑈 . Then, we update 𝐶𝑃𝑣 and 𝐻 in a

batch at the end of the iteration. Finally, in the output phase, we build the super-edges for each

super-node (Line 2 of Algorithm 4) in parallel.

5.2 Implementation of Mags-DM
Data Structures ofMags-DM. Like Mags, we implement the set of super-nodes 𝑃 using disjoint

set union, and we maintain the number of edges between super-nodes (i.e.,𝑊 ) during the merges.

Parallel Implementation of Mags-DM. We make Algorithm 5 parallel as follows. Each hash

function (Line 1) and its MinHash (Line 2) are initialized in parallel, while𝑊𝑢 is initialized in

parallel for each node 𝑢. During the dividing phase (Line 5), we use parallel sorting to order all

nodes in 𝑃 by MinHash, and then segment the sequence into node groups with identical MinHash

value. In the merging phase (Lines 6-13), we process different groups of super-nodes (Line 6) in

parallel, while the updates of 𝑃 and𝑊 are synchronized. Note that the updates of the MinHash are

conflict-free, as different groups are disjoint from each other. In the output phase, we process each

super-node in parallel (Algorithm 4 Line 2).
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6 EXPERIMENTS
6.1 Experimental Setup
The source code of this paper is available on GitHub

1
.

Datasets. Table 2 lists the datasets used in our experiments, and these datasets are widely used

in the literature of graph summarization [22, 25, 34, 45]. Some of the datasets (CN, EU, IC, IT) are

available from Network Repository
2
, some (EW, HW, UK) are from LAW

3
, while the rest are from

SNAP
4
. We remove all edge directions, duplicated edges, and self-loops in the datasets.

Algorithms. We compare our algorithms with Greedy [30], Slugger [25], and LDME [45]. In

particular, Greedy provides state-of-the-art summary compactness on small graphs, while Slugger
and LDME are the state-of-the-art methods that scale to large graphs. We implement our algorithms

and Greedy in C++, and we adopt the Java code open-sourced by the authors of Slugger and LDME.
Parameters. In each experiment, we repeat the method three times and report the average result.

We terminate the program when it cannot finish in 24 hours. Unless otherwise specified, we use

the following parameters in our experiments:

(1) Mags, Mags-DM: the parallel version (40 cores) with 𝑇 = 50.

(2) Greedy [30]: no parameter.

(3) LDME [45]: 𝑇 = 50 and 𝑘 = 5 (signature length).

(4) Slugger [25]: 𝑇 = 50.

Compactness Measure. Let 𝑅 be a representation that contains a summary graph 𝑆 = (𝑃, 𝐸) and
edge corrections 𝐶 . We evaluate the compactness of 𝑅 by its relative size to the original edge set E ,
i.e., ( |𝐸 | + |𝐶 |)/|E |. Recall that |𝐸 | + |𝐶 | is the representation cost in Equation 1. This compactness

measure is widely adopted in the literature of graph summarization [30, 34, 45] except for Slugger
[25]. Note that Slugger [25] adopts a hierarchical graph summarization model, so it uses a different

compactness measure. Given a graph G, Slugger asks for a representation 𝑅𝐻 = (𝑆, 𝑃+, 𝑃−, 𝐻 ), and
the relative size of which equals ( |𝑃+ | + |𝑃− | + |𝐻 |)/|E | (see [25]).
Environments.We perform experiments on a server with two Intel Xeon Gold 6342 CPUs and

512GBmemory, running Ubuntu 22.04 system. The server can run up to 96 threads concurrently. We

implement algorithms (Greedy [30], Mags, and Mags-DM) in C++. The C++ code is compiled with

g++ 10.2.0, and we use OpenMP for multi-threading programming. We compile the open-source

Java code of LDME [45] and Slugger [25] with OpenJDK 11.

6.2 Results on Different Graphs
We divide graphs into small graphs (CA-DB) that Greedy can process in 24 hours, and large graphs

(AM-IT) that Greedy runs out of time.

Results on Small Graphs (CA-DB). Figure 4 shows that Greedy consistently outperforms LDME
and Slugger on small graphs, and it returns a summary that is 21.7% smaller than LDME and 30.2%

smaller than Slugger on average. Our Mags and Mags-DM return a summary that is as compact

as Greedy, and the difference in relative size is on average < 0.1% and 2.1% respectively. Figure 6

reports the running time on small graphs. In particular, Mags outperforms Greedy by 2-4 orders of

magnitude in efficiency, outperforms LDME by 3.88x on average, and Slugger by 3.84x. Moreover,

Mags-DM can further reduce the running time by 7.22x compared with Mags.

1
https://github.com/nedchu/mags-release

2
http://networkrepository.com

3
https://law.di.unimi.it/datasets.php

4
http://snap.stanford.edu
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Fig. 4. Compactness on Small Graphs.
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Fig. 5. Compactness on Large Graphs.
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Fig. 6. Running Time on Small Graphs.
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Fig. 7. Running Time on Large Graphs.

Results on Large Graphs (AM-IT).We omit the results of Slugger on datasets UK and IT, because

Slugger cannot terminate within 24 hours. Figure 5 presents the summary compactness on large

graphs. The figure shows that Mags significantly outperforms existing methods in compactness,

and it can return a summary that is on average 24.9% smaller than LDME, 16.9% smaller than

Slugger . At the same time, the summary compactness of Mags and Mags-DM is close, i.e., Mags
outperforms Mags-DM by about 2.8%. Surprisingly, Slugger returns a summary more compact than

Mags on dataset HO. The reason is that HO contains a 2208 clique and a hierarchy around the

clique, and this structure well fits the hierarchical graph summarization model of Slugger . Figure 7
presents the running time on large graphs. On these graphs, Mags is on average 15.4x faster than

LDME and 4.4x faster than Slugger , while Mags-DM can further improve the efficiency by 16.4x

compared with Mags.
Results on All Graphs. OurMags andMags-DM return a summary as compact as Greedy on small

graphs (the difference in compactness is < 0.1% and 2.1% respectively), while they are faster than

Greedy by orders of magnitude. Compared with LDME (resp. Slugger),Mags returns a summary that

is 23.7% (resp. 21.4%) more compact using 11.1x (resp. 4.2x) less time. When we compare Mags with
Mags-DM , the latter takes 13.4x less time and returns a slightly larger summary (2.6% difference). In

summary, Mags and Mags-DM achieve state-of-the-art compactness and efficiency, while existing

works can only achieve state-of-the-art in one of them.

6.3 Technique Effectiveness of Mags
We compare the following three methods related to Mags, and report their performance in Figure 8.

(1) Mags: parallel version (40 cores) with 𝑇 = 50.

(2) Mags (naive CG): a variant of (1) where we use the naive candidate generation discussed at the

start of Section 3.1.

(3) Greedy [30]: the baseline greedy algorithm.

Technique from (3) to (2). We first justify the technique in Section 3.2, where we avoid the

unpromising pair and wasted update issues of Greedy with a novel algorithm design. Figure 8a

shows that the compactness of our methods is close to Greedy, and the difference in compactness

is <0.5% on average. According to Figure 8c, our methods outperform Greedy by 2-4 orders of
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Fig. 8. Mags outperforms its variant and Greedy .
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Fig. 9. Mags-DM outperforms its variants (Summary Compactness)
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Fig. 10. Mags-DM outperforms its variants (Running Time)

magnitude in running time. Also, ourmethods can scale to large graphs that greedy cannot terminate

within a reasonable time (24 hours).

Technique from (2) to (1). Next, we evaluate the technique in Section 3.1, i.e., we switch from the

naive candidate generation (CG) approach to the improved candidate generation ofMags. According
to the performance reports in Figures 8b and 8d, the improved CG is on average 3.68x faster than

the naive CG in running time, while the difference in summary compactness is negligible. When

we improve from (2) to (1), the speedup of the total running time is on average 2x over all datasets,

while the improved approach achieves a higher speedup on large graphs (e.g., UK and IT) and the

graphs with a high average degree (e.g., HO and ES).

6.4 Technique Effectiveness of Mags-DM
In this section, we compare our Mags-DM with the following variants to validate the effectiveness

of our design choices.
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(1) Mags-DM: parallel version (40 cores) with 𝑇 = 50.

(2) Mags-DM (no DS): a variant of (1) without our dividing strategy.

(3) Mags-DM (no MS): a variant of (1) without our merging strategy.

(4) SWeG [34]: the serial version without both strategies.

Figures 9-10 report the performance of these methods. Compared with Mags-DM (no DS), our
Mags-DM provides a similar compactness using 14.4x less time on average. This is because the

dividing strategy of Mags-DM can finely divide the nodes into small groups and speed up the

merging computation within those groups.

Compared with Mags-DM (no MS), our Mags-DM takes 21.3x less time and returns a summary

that is 12.8% more compact. Recall in Section 4 that Mags-DM adopts three merging strategies, and

we also compare Mags-DM with the version that removes one of the strategies. The results show

that the first (node selection) can increase the compactness by 3.1%; the second (similarity measure)

can increase the compactness by 2.8% and efficiency by 11.4x; and the third (merge threshold) can

increase the compactness by 1%.

We also implement SWeG [34] and compare it with our algorithm. The results show that our

Mags-DM takes on average 202x less time and is able to return a more compact summary on every

dataset. This validates the design choices of our Mags-DM .

6.5 Parameter Analysis

Different Numbers of Iterations 𝑇 . Figures 11 and 12 present the performance of Mags and
Mags-DM with different𝑇 . When we increase𝑇 from 10 to 50, the output relative size ofMags (resp.
Mags-DM) is decreased by on average 0.5% (resp. 2%), while the running time is increased by 35%

(resp. 37%). In other words, the summary compactness of Mags and Mags-DM quickly converges

when 𝑇 is small (e.g., 𝑇 = 20), while adopting a larger 𝑇 will slightly improve the compactness at

the cost of more running time. Our algorithms are robust to the number of iterations, because our

proposed merge threshold 𝜔 (𝑡) in Equation 6 can automatically adjust the step size (i.e., 𝑟 ) based

on 𝑇 , such that 𝜔 (𝑡) decrease steadily with the increase of 𝑡 .

Different Numbers of Threads 𝑝. Given the number of thread 𝑝 , we evaluate the parallel speedup

ratio as 𝑇1/𝑇𝑝 , where 𝑇1 (resp. 𝑇𝑝 ) equals the running time when executing the parallel algorithm

with 1 thread (resp. 𝑝 threads). Figure 13 reports the parallel speedup when we run Mags and
Mags-DM with different numbers of threads, varying 𝑝 in {1, 5, 10, 20, 40}. We observe that Mags
only provide an average speedup of 3.4x when we runMags using 40 cores. In comparison,Mags-DM
can provide an average speedup of 12.1x using 40 cores. In other words, the parallelism of Mags is
limited, while Mags-DM is effective for parallel computing. This is because Mags faces a data race
when merging a batch of node pairs concurrently, while Mags-DM divides nodes into groups that

are independent of each other. Besides, Mags and Mags-DM both provide a better speedup on large

graphs, e.g., they achieve about 5x and 15-20x speedup on datasets IC and HO, respectively.

Other Parameters (i.e., 𝑏, ℎ, 𝑘). Recall that Mags sets 𝑏, ℎ as small constants and 𝑘 as 𝑐 · 𝑑𝑎𝑣𝑔 (see
Theorems 3 and 2), and that Mags-DM sets 𝑏, ℎ as small constants (see Theorem 5). Figures 14-16

report the performance of Mags and Mags-DM with different 𝑏, ℎ, and 𝑘 . Overall, these parameters

have a limited impact on summary compactness (the difference is less than 0.5% on average), and

they have a wide range of feasible values. By default, we set 𝑘 = min{5 ·𝑑𝑎𝑣𝑔, 30}, 𝑏 = 5, and ℎ = 40.

Mags and Mags-DM can adopt a wide range of values of 𝑏, ℎ, 𝑘 , and the reason is as follows.

For Mags, we can generate a sufficient number of promising candidate pairs when 𝑏, ℎ, and 𝑘

reach certain values, then the greedy merge of Mags will always return a compact summary. For

Mags-DM , the algorithm uses MinHash to find promising pairs within groups, where 𝑏 and ℎ can

hardly improve the precision of finding pairs when the parameters reach a certain level.
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Fig. 11. Compactness vs. 𝑇 .

0

200

400

600

800

10 20 30 40 50

time (seconds)

T
(a) Mags

0

20

40

60

80

100

10 20 30 40 50

time (seconds)

T
(b) Mags-DM

Fig. 12. Running time vs. 𝑇 .
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Fig. 13. Speedup vs. #threads 𝑝 .
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Fig. 14. Compactness vs. 𝑏.
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Fig. 15. Compactness vs. ℎ.
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Fig. 16. Compactness vs. 𝑘 .

Algorithm 6: Neighbor Query of 𝑞 on Summary Graph

Input : node 𝑞, summary graph 𝑆 = (𝑃, 𝐸), corrections 𝐶
Output: 𝑞’s neighbor set ˆN𝑞

ˆN𝑞 ← ∅; 𝑢 ← the super-node such that 𝑞 ∈ 𝑃𝑢 ;1

for each super-node neighbor 𝑣 of 𝑢 do ˆN𝑞 ← ˆN𝑞 ∪ 𝑃𝑣 ;2

Let 𝐶+𝑞 = {𝑥 | +(𝑞, 𝑥) ∈ 𝐶} and 𝐶−𝑞 = {𝑥 | −(𝑞, 𝑥) ∈ 𝐶};3

ˆN𝑞 ← ( ˆN𝑞 ∪𝐶+𝑞 ) \𝐶−𝑞 ;4

return ˆN𝑞 ;5

6.6 GraphQuery Processing
In what follow, we show that our representation (see Definition 1) can handle general-case graph

queries (e.g., neighbor queries) and speed up specific graph queries (e.g., PageRank). In the future,

we will investigate other graph queries.
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Table 3. Running Time of the PageRank Computation (in seconds, bold is better).

SL DB AM CN YT SK IN EU ES LJ HO IC UK IT avg.

Input Graph Query 0.09 0.34 0.65 0.41 1.3 2.7 1.9 2.0 4.0 9.6 15.5 15.6 103 109 19.0

Summary Graph Query (Alg. 7) 0.13 0.62 1.2 0.40 2.6 4.7 1.9 1.9 7.0 20.9 17.9 12.2 88 94 18.1
Relative Size of Summary 0.84 0.48 0.61 0.13 0.68 0.47 0.10 0.19 0.72 0.73 0.54 0.07 0.07 0.08 0.41

Algorithm 7: Compute PageRank on Summary Graph

Input : damping factor 𝑑 , iteration number 𝑇

summary graph 𝑆 = (𝑃, 𝐸), corrections 𝐶
Output: the PageRank of all nodes 𝑃𝑅

Let 𝑃𝑅0 be a size-𝑛 vector of 1;1

for 𝑡 = 1..𝑇 do2

Let 𝑃𝑅𝑡 be a size-𝑛 vector of (1 − 𝑑);3

for each super-node 𝑢 in 𝑃 do 𝐴𝑢 ←
∑

𝑦∈𝑃𝑢 𝑑 ·
𝑃𝑅𝑡−1 (𝑦)
|N𝑦 | ;4

for each super-node 𝑢 in 𝑃 do5

𝐵𝑢 ←
∑
(𝑢,𝑣) ∈𝐸 𝐴𝑣 ;6

for each 𝑥 in 𝑃𝑢 do 𝑃𝑅𝑡 (𝑥) += 𝐵𝑢 ;7

for each +(𝑥,𝑦) ∈ 𝐶 do 𝑃𝑅𝑡 (𝑥) += 𝑑 · 𝑃𝑅𝑡−1 (𝑦)|N𝑦 | ;8

for each −(𝑥,𝑦) ∈ 𝐶 do 𝑃𝑅𝑡 (𝑥) –= 𝑑 · 𝑃𝑅𝑡−1 (𝑦)|N𝑦 | ;9

return 𝑃𝑅𝑇 ;10

Neighbor Queries. Given a node 𝑞, we aim to return its neighbor set N𝑢 . Algorithm 6 presents

how to answer neighbor queries on summary graph 𝑆 = (𝑃, 𝐸) and corrections 𝐶 . The expected

time complexity of Algorithm 6 is 𝑂 (1.12 · 𝑑𝑎𝑣𝑔) where 𝑑𝑎𝑣𝑔 is the average degree (i.e., 2𝑚/𝑛). This
result is also reported in Shin et al. [34].

The time complexity is obtained as follows. Among all datasets in Table 2, when we run ourMags
or Mags-DM , the number of negative corrections |𝐶− | is no more than 6% of the number of edges

in the input graph, i.e., |𝐶− | ≤ 0.06 ·𝑚. The time complexity of Algorithm 6 is in proportional to

|N𝑢 | + 2 · |𝐶−𝑞 | when we use hash tables. Thus, the expected time complexity of Algorithm 6 equals

E{|N𝑢 | + 2 · |𝐶−𝑞 |} =
|E | + 2 · |𝐶− |

𝑛/2 ≤ 𝑚 + 0.12 ·𝑚
𝑛/2 = 1.12 · 𝑑𝑎𝑣𝑔

PageRank Computation. PageRank is an algorithm for measuring the importance of website

pages. Let 𝑑 be the damping factor. Then, we define the PageRank of a node 𝑥 at timestamp 𝑡 as

𝑃𝑅𝑡 (𝑥) =
{
1 if 𝑡 = 0

(1 − 𝑑) + 𝑑 ·∑𝑦∈N𝑥

𝑃𝑅𝑡−1 (𝑦)
|N𝑦 | if 𝑡 > 0

(8)

Given 𝑑 and an iteration number 𝑇 , we aim to compute the PageRank for any 𝑡 ≤ 𝑇 . Algorithm
7 describes the algorithm for computing the PageRank on the summary graph 𝑆 = (𝑃, 𝐸) and
corrections 𝐶 . Specifically, given a super-node 𝑢 that contains a node 𝑥 , rather than summing over

𝑥 ’s neighbor set N𝑥 (see Equation 8), we sum over the super-node neighbor of 𝑢 (Lines 4-7) and

adjust the values using the corrections that contain 𝑥 (Lines 8-9).

The running time of Algorithm 7 is 𝑂 (𝑇 · ( |𝐸 | + |𝐶 |)), while the query on the input graph using

Equation 8 takes 𝑂 (𝑇 ·𝑚) time. By the fact that |𝐸 | + |𝐶 | ≤ 𝑚, the PageRank computation on the

summary is asymptotically faster than that on the input graph.
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Table 3 reports the running time of the two methods. The results show that Algorithm 7 has a

smaller average running time, and it outperforms the PageRank query on the input graph for 8 out

of 18 datasets. For the remaining datasets, the time cost of Algorithm 7 is no better than the input

graph query as the operations in Algorithm 7 incur a large constant factor.

Discussion. The experiments show that we can achieve similar (or even slightly better) running

time when we run the algorithm on the summary graph, and a more compact summary usually

leads to faster graph processing. However, it is not guaranteed that the algorithm on the summary

graph is faster, because the algorithm on the original graph may be simpler in its implementation

and the decompression is essentially required for some operations.

7 RELATEDWORKS

Graph Summarization. There has been a large body of literature on graph summarization (see

[2, 21, 22, 24, 25, 27, 30, 34, 45]). Navlakha et al. [30] are the first to propose the graph summarization

problem. They propose a greedy method and a randomized method (i.e., Greedy and Randomized).
Shin et al. [34] overcome the inefficiency of previous works, and they devise a novel algorithm

named SWeG that can scale to billion-scale graphs. The efficiency of Shin et al.’s paradigm [34] has

motivated a line of follow-up works, e.g., Yong et al. [45] design an algorithm LDME that improves

over SWeG in performance, and Lee et al. [25] propose a hierarchical graph summarization problem

along with an algorithm Slugger for the problem. Besides, Mosso [22] is a graph summarization

method for dynamic graph streams; Liu et al. [27] study the graph summarization problem under

a distributed setting. In Section 6, the experiments show that our methods (Mags and Mags-DM)

outperform the state-of-the-art methods (Greedy, LDME, and Slugger) in compactness and efficiency.

Other Techniques for Summarizing Graphs. In this paper, we refer to "graph summarization" as

the problem in Definition 1, but this term is also used in many other problems that seek a compact

graph representation while discovering the structural patterns of the graph. Liu et al. [28] provide

a comprehensive overview of these problems. For example, Tian et al. [39] summarize graphs

based on node attributes and different edge; Zhang et al. [46] design a discovery-driven graph

summarization; Koutra et al. [23] describe a graph with a set of assumed vocabulary (i.e., cliques,

stars, chains, and bipartite cores); Song et al. [36] develop a parallel summarization algorithm for

large knowledge graphs; Ke et al. [20] study the summarization of multi-relation networks; Tang et

al. [37] propose a sketch for summarizing graph streams in a sub-linear space; Cebiric et al. [8]

survey the summarization of semantic graphs.

Another line of studies aims to produce a graph summary of a certain size (typically lossy) which

minimizes the reconstruction error, e.g., Riondato et al. [31] aim to produce a summary that can

be stored in main memory with a quality guarantee; Toivonen et al. [40] study how to compress

weighted graphs with relatively small compression errors; Lefevre et al. [26] summarize a graph

specifically for a series of graph queries. Some works introduced in the above subsections [2, 24, 27]

also belong to this category. These graph summarization methods can be adapted to a lossless

scenario by adding a correction set, but they are not originally conceived for a lossless setting.

The above methods are unable to provide a summary as compact as the result of the graph

summarization problem (Definition 1), because the problem objectives are different. For instance,

LDME [45] outperforms Koutra et al.’s method [23], and amethod [24] for lossy graph summarization

(the lossy version of Definition 1) outperforms Lefevre et al.’s method [26].

Other Techniques for Compressing Graphs. The graph summarization techniques discussed

above seek a small graph representation that can capture structural patterns. In comparison, a graph

compression technique seeks the absolutely smallest representation, e.g., relabeling node [1, 5, 14],

compressing adjacency lists with reference encoding [5], investigating a graph representation that
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asymptotically matches the storage lower bound [18]. Besta et al. [3] survey over those graph

compression techniques.

This line of research complements (and is orthogonal to) the studies on graph summarization.

According to Shin et al. [34], SWeG (as well as our Mags and Mags-DM) can be combined with

any compression technique to improve its compression performance. In other words, we can

feed the output of our Mags or Mags-DM to another graph compression method, and compress

it further. Due to the prevalence of large-scale graph analysis [10, 12, 13, 33, 41, 43, 47, 48], both

graph summarization and graph compression are useful in practice.

8 CONCLUSION
This paper presents Mags and Mags-DM , two algorithms for graph summarization. In particular,

Mags is a greedy algorithm that runs in𝑂 (𝑇 ·𝑚·(𝑑𝑎𝑣𝑔+log𝑚)) time, and it significantly improves over

the existing greedy method in efficiency without affecting its summary compactness. We also devise

a divide-and-merge algorithm Mags-DM that takes 𝑂 (𝑇 ·𝑚) running time, and it improves over

existing divide-and-merge methods in summary compactness and practical efficiency. In addition,

both Mags and Mags-DM can be accelerated by parallel computing. Our experiments show that

Mags andMags provide state-of-the-art summary compactness and efficiency, but existing methods

can only achieve state-of-the-art in one of them. This is the first time that graph summarization

algorithms are made practical while still offering a compact summary. For future work, we may

extend Mags and Mags-DM to lossy summarization when higher compactness is required, e.g., we

allow a bounded error in the representation. It is also interesting to study the extension of Mags
and Mags-DM to dynamic graphs that are frequently updated.
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