
Finding the Best k in Core Decomposition:
A Time and Space Optimal Solution

Deming Chu�†, Fan Zhang�, Xuemin Lin§, Wenjie Zhang§, Ying Zhang�, Yinglong Xia‡, Chenyi Zhang�

�Guangzhou University, †East China Normal University, §University of New South Wales
�University of Technology Sydney, ‡Facebook AI, �Huawei Technologies

{ned.deming.chu, fanzhang.cs}@gmail.com, {lxue, zhangw}@cse.unsw.edu.au
ying.zhang@uts.edu.au, yxia@fb.com, zhangchenyi2@huawei.com

Abstract—The mode of k-core and its hierarchical decompo-
sition have been applied in many areas, such as sociology, the
world wide web, and biology. Algorithms on related studies often
need an input value of parameter k, while there is no existing
solution other than manual selection. In this paper, given a graph
and a scoring metric, we aim to efficiently find the best value
of k such that the score of the k-core (or k-core set) is the
highest. The problem is challenging because there are various
community scoring metrics and the computation is costly on large
datasets. With the well-designed vertex ordering techniques, we
propose time and space optimal algorithms to compute the best k,
which are applicable to most community metrics. The proposed
algorithms can compute the score of every k-core (set) and can
benefit the solutions to other k-core related problems. Extensive
experiments are conducted on 10 real-world networks with size
up to billion-scale, which validates both the efficiency of our
algorithms and the effectiveness of the resulting k-cores.

I. INTRODUCTION

Graphs are widely adopted to model the structure of com-
plex networks with a large spectrum of applications. As a
fundamental graph problem, cohesive subgraph mining is to
extract groups of densely connected vertices. The well-studied
model of k-core is defined as a maximal connected subgraph in
which every vertex is connected to at least k other vertices in
the same subgraph [41], [49]. We use k-core set to denote the
subgraph formed by all the (connected) k-cores in the graph,
for a fixed parameter k. The hierarchical decomposition by
k-core (or core decomposition) computes the k-core set for
every possible k. The hierarchy of core decomposition builds
on the containment property of k-core sets: the (k + 1)-core
set is always a subgraph of the k-core set.

The k-core and its hierarchical structure have a wide range
of applications, such as finding communities in the web [22]
and social networks [25], [55], [63], discovering molecular
complexes in protein interaction networks [6], recognizing
hub-nodes in brain functional networks [8], analyzing un-
derlying structure of the Internet and its functional conse-
quences [10], understanding software systems using software
networks [64], and predicting structural collapse in mutualistic
ecosystems [43].

Despite the elegant structure of k-core hierarchy and the
various applications, a common open problem is to find the

∗Deming Chu and Fan Zhang are the joint first authors. Fan Zhang is the
corresponding author.

best k-core set or the best single k-core. To the best of our
knowledge, there is no previous work that studies the best k
value for k-core and for other models of cohesive subgraph,
e.g. k-truss, k-plex, k-vcc, k-ecc. The existing solution is
to simply adopt the user-defined k, or to determine k by
trivial statistics, e.g., setting k to average vertex degree. The
underlying problem is essentially to ask the quality of the k-
cores, since different input values lead to different k-cores. In
this paper, given a graph and a community scoring metric, we
aim to efficiently compute a value of k such that the k-core
set has the highest score among all the k-core sets for every
integer k. Besides, we also aim to efficiently find a best single
k-core among all the k-cores for every integer k.

There is no uniform metric to evaluate the quality of a
subgraph [61]. Different community scoring metrics are de-
signed for different objectives considering particular network
properties [11], [61]. For example, clustering coefficient is a
goodness metric for clustering tendency [57], and modularity
measures the quality of a graph partition [44], [45]. To apply
our proposed algorithms to various community metrics and
even new metrics, we extract representative primary values
which can be utilized to calculate most community scores [11].

A basic solution of finding the best k is to conduct quality
computation on the k-core set for every possible input of k.
In our preliminary experiments, for a graph that can be loaded
into memory within 100 seconds, the basic solution spent
more than one day for some scoring metrics. To efficiently
handle billion-scale graphs, we design a light-weight vertex
ordering procedure to facilitate incremental score computation.
We compute the score of k-core sets from the center core of
the graph to the margins, with optimal time and space cost.

Our paradigm can also be applied to find a best single k-
core when the connectivity of different k-cores is considered
in the computation. The score of every k-core (set) can be
retrieved by our algorithms. Moreover, our algorithm can
help solve other k-core related problems, e.g., finding densest
subgraph, maximum clique, and size-constrained k-core. The
experiments in the paper show that our algorithm can serve as
better approximate solutions compared to the state-of-the-art
or produce useful intermediate results.

Example 1. Figure 1 illustrates the hierarchy of a network
decomposed by the k-core model, where k varies from 1 to
3. When k = 1, the 1-core (set) is whole graph, i.e., G1.

Fig. 1. Hierarchical Core Decomposition

When k = 2, the k-core decomposition recursively deletes
every vertex with degree less than 2, resulting in the 2-core
(set) G2. When k = 3, the 3-core set consists of two 3-cores:
G3.1 and G3.2.

Suppose the scoring metric is average degree (twice the
number of edges divided by the number of vertices), (i) the
best k-core set is the 3-core set, because it has the highest
score (average degree) among all the k-core sets, and the
best k is 3; and (ii) the best single k-core is G3,1 as it has
the highest score among all the k-cores with different k.

Contributions. The principal contributions in this paper are
summarized as follows.

• To the best of our knowledge, this is the first work to
study the following problems: given a graph G and a
community scoring metric Q, (i) find the best k-core set;
and (ii) find a best single k-core, according to Q.

• We develop efficient and extensible algorithms to solve
our proposed problems. We prove the algorithms are
worst-case optimal in both time and space complexities.
For many scoring metrics, our score computation can re-
turn in O(n) time where n is the number of vertices in the
graph. The algorithms can apply to various community
metrics and can shed light on finding the best k for other
decomposition models.

• Extensive experiments are conducted on 10 real graphs
with up to billions of edges. The results show that the
quality of k-core (set) with the resulting k is much better
than that with user-defined k or other trivial values. To-
wards efficiency, our algorithms outperform the baselines
by 1-4 orders of magnitude in runtime. For some k-
core related problems, our algorithms can serve as good
approximate solutions or benefit the algorithm design.

II. PRELIMINARIES

We consider an undirected and unweighted simple graph
G = (V,E), with n = |V | vertices and m = |E| edges
(assume m > n). Given a vertex v in a subgraph S, N(v, S)
denotes the neighbor set of v in S, i.e., N(v, S) = {u |
(u, v) ∈ E(S)}. The degree of v in subgraph S, i.e., |N(v, S)|,
is denoted by d(v, S). For the input graph G, we omit G in
the notations when the context is clear, e.g., we abbreviate
N(v,G) to N(v). Table I summarizes the notations.

A. Core Decomposition

The model of k-core [41], [49] is defined as follows.

TABLE I
SUMMARY OF NOTATIONS

Notation Definition

G = (V,E) an undirected, unweighted simple graph
n;m number of vertices/edges in G (m > n)
S a subgraph of G
V (S) the set of vertices in S
E(S) the set of edges in S
id(v) unique identification of v in G
N(v);N(v, S) the set of neighbors of v in G / in S
d(v); d(v, S) degree of v in G / in S
Ck the k-core set of G
c(v) coreness of v in G, max{k | v ∈ Ck}
kmax largest k s.t. Ck is not empty
Hk the k-shell of G, {v | c(v) = k}
rank(v) the ranking of vertex v in V
n(S) number of vertices in S
m(S) number of edges in S
b(S) number of boundary edges of S
Δ(S) number of triangles in S
t(S) number of triplets in S

Definition 1 (k-Core). Given a graph G and an integer k, a
subgraph S is a k-core of G, if (i) each vertex v ∈ S has at
least k neighbors in S, i.e., d(v, S) ≥ k; (ii) S is connected;
and (iii) S is maximal, i.e., any supergraph of S is not a k-core
except S itself.

We use the k-core set to denote the subgraph containing
every (connected) k-core with a fixed parameter k.

Definition 2 (k-Core Set). Given a graph G and an integer
k, the k-core set of G, denoted by Ck, is the subgraph formed
by all the (connected) k-cores in G.

If an integer k′ ≥ k, the k′-core set is always a subgraph of
the k-core set, i.e., Ck′ ⊆ Ck. This implies that each vertex
in a graph has a unique number of coreness [7].

Definition 3 (Coreness and k-Shell). Given a graph G, the
coreness of a vertex v ∈ G is c(v) = max{k | v ∈ Ck},
i.e., the largest k such that the vertex v is in the k-core. The
k-shell of G is Hk = {v | c(v) = k}, i.e., the set of vertices
with coreness k.

We use kmax (graph degeneracy) to denote the largest
coreness in G, i.e., the largest k such that the k-core of G
is not empty.

Definition 4 (Core Decomposition). Given a graph G, core
decomposition is to compute the coreness c(v) for every vertex
v ∈ V (G).

The algorithm for core decomposition is to recursively
remove the vertex with the smallest degree in the graph, with
time complexity of O(m) [7].

Example 2. Figure 2 shows a graph of 12 vertices. The
graph itself is a 2-core. When k = 3, the k-core computation
recursively deletes every vertex with degree less than 3, i.e.,
v5, v7, v6 and v8. The 3-core set is the induced subgraph by
the rest vertices. The coreness of v5, v7, v6 and v8 is 2, and

Fig. 2. A 2-core graph in which the 3-core is circled

the coreness of other vertices is 3. There are two connected
components (3-cores) in the 3-core set, as circled in the figure.

B. Problem Definition
We are the first to propose and study the following problems

of finding the best k-core (set).

• find the k∗-core set Ck∗ such that it has the highest score
among all the k-core sets for every integer k with 0 ≤
k ≤ kmax;

• find the k∗-core S such that it has the highest score
among all the k-cores for every integer k with 0 ≤ k ≤
kmax.

C. Community Scoring Metrics
Although there are various community scoring metrics

considering different community properties, most of them are
constructed on the following primary values [61].

Primary Values. Let S be a subgraph to evaluate, we study
the following common primary values.

• n(S): the number of vertices in S, i.e., n(S) = |V (S)|;
• m(S): the number of edges in S, i.e., m(S) = |E(S)|;
• b(S): the number of boundary edges in S, b(S) =
|{(u, v) | (u, v) ∈ E, u ∈ S, v �∈ S}|;

• Δ(S), the number of triangles in S;
• t(S), the number of triplets (three vertices connected by

two edges) in S, i.e., t(S) =
∑

v∈S

(
d(v,S)

2

)
;

Metrics. Based on the above primary values, some community
scoring metrics are defined as follows.

• Average Degree: f(S) = 2×m(S)
n(S) is the average degree

of vertices in S;
• Internal Density: f(S) = 2×m(S)

n(S)×(n(S)−1) is the internal

density of vertices in S;

• Cut Ratio: f(S) = 1 − b(S)
n(S)×(n−n(S)) is the difference

of 1 and the fraction of existing boundary edges over all
the possible ones;

• Conductance: f(S) = 1− b(S)
2×m(S)+b(S) is the difference

of 1 and the proportion of degrees where the vertex points
to the outside;

• Modularity: f(P) =
k∑

i=1

(
m(Pi)

m −
(

2×m(Pi)+b(Pi)
2×m

)2
)

is the modularity for a partition P on G, where Pi is the
ith community in the partition [45];

• Clustering Coefficient: f(S) = 3×Δ(S)
t(S) measures the

tendency of vertices to cluster together;

Given a scoring metric, for an integer k, the target subgraphs
for computing the scores are all the k-cores with the given k,
i.e., the subgraphs in Ck.

III. FINDING THE BEST K-CORE SET

In this section, we propose the solution to find the best k
for the k-core set, including the baseline in Section III-A, and
the improved algorithm in the rest sections.

A. Baseline Algorithm

Given a graph G and a community scoring metric Q, a
baseline solution is to first conduct core decomposition, order
the vertices by coreness to fast retrieve a k-core set, and then
compute the score of every k-core set according to Q, for
every integer k with 0 ≤ k ≤ kmax.

We use a bin sort to order the vertices in G by coreness,
and record every start position of the vertices with the same
coreness, which takes O(n) time. Then, retrieving the vertex
set of a k-core set Ck takes O(|V (Ck)|) time. Let O(qk)
be the time cost to compute the score of Ck given V (Ck),
Q and G. The time complexity of the baseline algorithm is

O
(∑kmax

k=0 (qk + |V (Ck)|)
)

. Although the baseline runs in

polynomial time, it is costly to handle large graphs.

B. Vertex Ordering for Optimal Neighbor Query

In order to compute the best k in optimal time and space
cost, we first introduce the vertex ordering techniques.

We divide the vertices in G into kmax + 1 arrays where
each is associated with a unique coreness value. The arrays are
ordered by the associated coreness to fast locate the vertices
with different coreness.

For every vertex v in G, the neighbor set of v is ordered by
increasing values of vertex rank which is defined as follows.

Definition 5 (Vertex Rank). Given two vertices u and v, the
rank of v is higher than u, denoted by rank(v) > rank(u),
if (i) c(v) > c(u); OR (ii) c(v) = c(u) and id(v) > id(u),
where id(v) is the unique identification of v.

For every vertex v, to efficiently retrieve specific parts of
its neighbour set, we also record some position tags where
same is the position of the first u in N(v) such that c(u) ≥
c(v), plus is the position of the first u in N(v) such that
c(u) > c(v), and high is the position of the first u in N(v)
such that rank(u) > rank(v). The above tag is set to |N(v)|
when there is no such u ∈ N(v) satisfying the condition. The
ordering is summarized in Table II.

Algorithm 1 shows the pseudo-code for vertex ordering.
At Line 1-4, we use kmax + 1 bins to sort vertices by rank,
where each bin represents a unique value of coreness. Inspired
by [33], we flatten kmax + 1 bins to sort the edge set: (i) At
Line 5-8, for every vertex v with ascending order of vertex id,
we push the pair (v, u) from every neighbor u of v into the
bin represented by the coreness of v; (ii) At Line 9-11, we
retrieve the sorting from the kmax + 1 bins by one scan from
bin 0 to bin kmax, where N ′(u) is empty initially for every
u ∈ V . For every element (v, u) in the bins, we push v into
the new neighbor set of u s.t. the neighbors of u are ordered
by vertex rank. Besides, we record the subscripts in Table II
for each vertex via one scan of the new edge set (Line 13).

Complexity of Vertex Ordering and Query. In Algorithm 1,
the sorting of vertices takes O(n) since every vertex is visited

TABLE II
THE ORDERED NEIGHBOR SET OF v

Subscript of u ∈ N(v) Constraint of u Vertex Set

[0, same− 1] c(u) < c(v) N(v,<)
[same, plus− 1] c(u) = c(v) N(v,=)
[plus, |N(v)| − 1] c(u) > c(v) N(v,>)
[same, |N(v)| − 1] c(u) ≥ c(v) N(v,≥)
[high, |N(v)| − 1] rank(u) > rank(v) N(v,>r)

Every u in N(v) is ordered by ascending order of rank;
same: position of the first u ∈ N(v) s.t. c(u) ≥ c(v);
plus: position of the first u ∈ N(v) s.t. c(u) > c(v);

high: position of the first u ∈ N(v) s.t. rank(u) > rank(v).

Algorithm 1: vertex ordering

Input : a graph G = (V,E), the coreness c(v) of every
vertex v ∈ V

Output : G with ordered V and E by vertex rank, and
position tags

/* Order vertex set V */
bin1 ← a list of (kmax + 1) empty arrays;1
for each v in V with ascending order of vertex id do2

bin1[c(v)].push_back(v);3

V ← concatenation of bin1[0],bin1[1], ...,bin1[kmax];4
/* Order edge set E */
bin2 ← a list of (kmax + 1) empty arrays;5
for each v in V with ascending order of vertex id do6

for each u in N(v) do7
bin2[c(v)].push_back(pair(v, u));8

for each i from 0 to kmax do9
for each element (v, u) in bin2[i] from head to tail do10

N ′(u).push_back(v);11

E ← each v ∈ V has neighbors N ′(v);12
same, plus and high of v ← scan N ′(v) for every v ∈ V ;13
return G = (V,E) with ordered V and E, and position tags14

twice, and the sorting of the edge set takes O(m) since every
edge is visited at most 5 times. The overall time complexity
is O(m). The space complexity is dominated by the size of
the graph which is O(m).

After the vertex ordering, according to Table II, we can
answer |N(v, ·)| in O(1) time, e.g., |N(v,=)| = plus−same,
and return N(v, ·) in O(|N(v, ·)|) time.

Example 3. Figure 3 illustrates the vertex ordering for the
graph in Figure 2. Each vertex in Figure 3 is colored according
to different coreness values. On the top, all the vertices are
ordered by coreness with ties broken by vertex id. The vertices
in every neighbor set are also sorted by the above order. In
the figure, we show the ordered neighbor sets of four vertices
and their position tags. For vertex v1 and v9, the position plus
equals to the length of the neighbor set because the coreness
of any neighbor is not larger than the vertex. By checking the
ordering results and Table II, all types of |N(v, ·)| queries can
be answered in O(1), e.g., |N(v6, >)| = |N(v6)| − plus = 1.

C. The Improved Algorithm

An important property of hierarchical core decomposition
is its containment nature: Ck+1 ⊆ Ck for every coreness k.
This suggests that the primary values of the k-core set can be

Vertex Ordered Neighbors

0 3 0

0 3 1

0 2 2

1 4 1

Fig. 3. Example of Vertex Ordering

Algorithm 2: computing the best k

Input : a graph G, a community scoring metric Q
Output : the best k value for a k-core set
compute each k-core set Ck by core decomposition;1
order G by Algorithm 1;2
metric ← [0, . . . , 0];3
in ← 0,out ← 0,num ← 0;4
for each integer k from kmax to 0 do5

for v ∈ Hk do6
in ← in+ |N(v,>)|+ 1

2
|N(v,=)|;7

out ← out+ |N(v,<)| − |N(v,>)|;8
num ← num+ 1;9

metric[k] ← compute_metric(Q,in,out,num);10

return metric11

incrementally derived from the primary values of the (k+1)-
core set, with minor modification according to their difference.
Based on the above observation, we compute the scores of the
k-core sets in a top-down manner, i.e., for k from kmax to
0. Note that it is costly to count some primary values in a
bottom-up manner, i.e., for k from 0 to kmax.

Algorithm 2 shows the pseudo-code for computing the
best k. The algorithm incrementally computes and updates
the primary values of k-core sets. Note that we present the
computation for clustering coefficient in Section III-D. In
Algorithm 2, array metric records the score of every k-core
set. Let S be the subgraph induced by the visited vertices at
Line 6. Variable in records the number of internal edges of
S. Variable out records the number of boundary edges of S
where each edge has exactly one endpoint in S. Variable num
records the number of visited vertices.

Line 3-4 initializes array metric and the primary values.
Line 5-10 incrementally compute the score of the k-core set
from k = kmax to k = 0. For each value of k, we only visit
the vertices with coreness k at Line 6, and update the primary
values at Line 7-9. Based on the primary values for the (k+1)-
core set, we update the values by considering every neighbor
u of the visited vertex v as follows.

• If c(u) = c(v), then (u, v) should be counted in the value
in. Because (u, v) will be counted in in when we visit
both u and v at Line 6, we add 1

2 |N(v,=)| to in for
visiting v.

• If c(u) < c(v), then (u, v) should be counted in the value
out. Because (u, v) will only be counted in out when v

is visited at Line 6, we add |N(v,<)| to out for visiting
v.

• If c(u) > c(v), then u ∈ Ck+1 and (u, v) /∈ Ck+1, i.e.,
(u, v) is a boundary edge of the (k+1)-core set. For the
k-core, (u, v) becomes an internal edge since (u, v) ∈
Ck(G). So we add |N(v,>)| to in and subtract |N(v,>
)| from out.

In Line 10, the community score is calculated from the
primary values, e.g., the average degree of a k-core set is
2 × in/num, the cut ratio is 1 − out/(num × (n − num)),
etc. Line 11 returns the result.

Example 4. Given a community scoring metric such as
average degree, the execution of Algorithm 2 on the graph in
Figure 2 is as follows. First, we compute the primary values
of the 3-core set by visiting every vertex v in the 3-core set.
Because there are 8 vertices in C3, and every v ∈ C3 has
|N(v,>)| = 0 and |N(v,=)| = 3, the number of internal
edges in the 3-core set is in = 8×(0+3/2) = 12. The average
degree of 3-core set is 2×12/8 = 3. Then we visit each vertex
in 2-shell and incrementally count the internal edges in 2-
core. When v5, v6, v7 and v8 are sequentially visited, we have
in = 12+(1+1/2)+(1+3/2)+(0+2/2)+(1+2/2) = 19.
The average degree of 2-core set is 2× 19/12 ≈ 3.17. So 2-
core set is preferred when the metric is average degree.

Correctness. The correctness of Algorithm 2 is based on the
correct computation of primary values for every k-core set,
which is immediate according to the definitions of primary
values, the containment property of k-cores, and Line 7-9.

Complexity. (Space) The space complexity is dominated by
the size of the graph which takes O(m). (Time) Benefitting
from the ordering in Section III-B, |N(v, ·)| can be retrieved in
O(1) time for every vertex v. The calculation of a community
score takes O(1). Each vertex is visited exactly once in
Algorithm 2. The score computation in Algorithm 2 takes
O(n). Both core decomposition and vertex ordering take
O(m). The time complexity of Algorithm 2 is O(m).

Optimality. Since the time or space complexity of computing
an existing community metric on G is at least O(m) [11], the
worst-case complexity of Algorithm 2 is optimal.

D. Computation of Triangles and Triplets

Algorithm 3 shows the variant of Algorithm 2 for computing
the best k when the community metric is based on triangles
and triplets, e.g., clustering coefficient. Similar to Algorithm 2,
we incrementally compute the primary values in a top-down
manner: from k = kmax to k = 0. For every k-core set,
array metric records its score, variable triangle records
the number of triangles, and variable triplet records the
number of triplets. They are initialized in Line 1-2.

Triangle Counting. At Line 7-12, the algorithm incrementally
updates the number of triangles in the k-core set based on that
in the (k+ 1)-core set. For each edge (u, v) with rank(u) >
rank(v) (Line 7-8), we count the triangles containing (u, v)
by visiting the neighbors of x where x is the one in {u, v} with
smaller degree (Line 9-12). To count triangles, we enumerate

Algorithm 3: computing k by triangles and triplets

Input : a graph G, a community scoring metric Q
Output : the best k value for a k-core set
metric ← [0, . . . , 0];1
triangle ← 0,triplet ← 0;2
f>[v] ← f≥[v] ← 0 for each v ∈ V ;3
compute each k-core set Ck by core decomposition;4
order G by Algorithm 1;5
for each k from kmax to 0 do6

for v ∈ Hk do7
for u ∈ N(v,>r) do8

x ← u, y ← v;9
swap(x, y) if deg(x) > deg(y) ;10
for w ∈ N(x,>r) do11

triangle ← triangle+ 1 if12
w ∈ N(y,>r);

triplet ← triplet+
(|N(v,≥)|

2

)
;13

kshell_nbr ← ⋃
u∈Hk

N(u,>);14
for v ∈ kshell_nbr do15

f>[v] ← f≥[v];16

for v ∈ Hk do17
for u ∈ N(v) do18

f≥[u] ← f≥[u] + 1;19

for v ∈ kshell_nbr do20
gt k ← f>[v], eq k ← f≥[v]− f>[v];21
triplet ← triplet+

(
eq k
2

)
+ gt k × eq k;22

metric[k] ←23
compute_metric(Q,triangle,triplet);

return metric24

each vertex w in N(x,>r) and check if w is also in N(y,>r).
By visiting N(·, >r) of each vertex, we ensure rank(w) >
rank(u) > rank(v) for every counted triangle, i.e., every
triangle is counted for exactly once since we count the three
vertices by increasing order of vertex rank.

Triplet Counting. Recall that a triplet 〈u, v, w〉 is formed
by three vertices connected by two edges (v, u) and (v, w),
centered on v. (i) For each center vertex v in Hk, any pair of
the neighbors of v in the k-core can form a triplet centered on
v. Line 13 adds the number of such pairs to triplet. (ii)
Line 14-22 counts the new triplets centered on the vertices of
the (k + 1)-core set.

We use f>[v] and f≥[v] to count the number of u ∈ N(v)
such that c(u) > k and c(u) ≥ k, respectively. Here we do not
use N(v, ·), because a neighbor query in Section III-B only
works for vertices in the k-shell, i.e., f>[v] = |N(v,>)| and
f≥[v] = |N(v,≥)| iff k = c(v). Line 14 collects the vertices
in N(u,>) of every u with coreness k, because they are the
center vertices in the (k + 1)-core set. Line 15-19 computes
f>[v] and f≥[v] for every vertex v in the (k+1)-core set, by
updating the values from the previous iteration.

Line 20 iterates over each center vertex in the (k+1)-core
set, and Line 21 assigns to gt k and eq k the number of v’s
neighbor u such that c(u) > k and c(u) = k, respectively. To
form a triplet (uncounted) with a center vertex in the (k+1)-
core set, (a) the other two vertices are from Hk; or (b) one
vertex is from Ck+1 and the other is from Hk. In Line 22,

(
eq k
2

)
is the number of the triplets in case (a), and gt k×eq k

is the number of the triplets in case (b).

The community score is calculated in Line 23 using the
primary values, e.g., the clustering coefficient of a k-core is
3× triangle/triplet. Line 24 returns the result.

Example 5. Given a community scoring metric such as
clustering coefficient, the execution of Algorithm 3 on the
graph in Figure 2 is as follows. We first compute the number
of triangles and triplets in 3-core set by Line 7-13: trian
gle = 8 and triplet = 24. The clustering coefficient
of 3-core is 3 × 8/24 = 1. Then, we incrementally compute
the values for 2-core set. Line 7-12 detect two new triangles
(v5, v6, v3) and (v6, v7, v8), so triangle = 8 + 2 = 10.
Line 13 detects

(
2
2

)
new triplets for v5,

(
4
2

)
for v6,

(
2
2

)
for v7,

and
(
3
2

)
for v8. Line 22 iterates over kshell_nbr, that is

{v3, v9}, and counts
(
2
2

)
+3× 2 new triplets for v3 and 3× 1

new triplets for v9. To sum up, triplet = 24+21 = 45. The
clustering coefficient of 2-core is 3 × 10/45 ≈ 0.67. So, the
3-core set is preferred when the metric is clustering coefficient.

Correctness. For every triangle (v, u, w) in a k-core but not
in a (k+1)-core, suppose rank(v) < rank(u) < rank(w), v
is certainly in k-shell; otherwise, (v, u, w) is in a (k+1)-core
according to vertex rank, a contradiction. Every such triangle
is counted exactly once in Line 7-12, since the visiting of v,
u, and w is unique according to their increasing vertex rank.

For every triplet 〈u, v, w〉 in a k-core but not in a (k +
1)-core, when the center vertex v is in the k-shell, Line 13
correctly counts such triplets. When k = kmax, f≥[v] of every
v ∈ Ckmax

is correctly generated by Line 17-19. For the next
iteration k = kmax−1, f>[v] of every v ∈ Ckmax

is correctly
assigned by f≥[v] from last iteration (Line 15-16). Then f≥[u]
of every u ∈ Ckmax−1 is correctly updated by visiting the
neighbors of every v ∈ Hk. For every k, f≥[v] and f>[v]
for every v ∈ Ck+1 are correct by induction. For every v ∈
kshell_nbr, the correctness of gt k, eq k and triplet
immediately follows. The community score is correct based
on the correct primary values.

Complexity. (Space) The space complexity is dominated by
the size of graph which takes O(m). (Time.A) The time cost

for triangle counting is O(m1.5). We prove N(z,>r) ≤ 2
√
m,

for every vertex z visited in Line 7-12. If deg(z) ≤ √
m,

then |N(z,>r)| ≤ deg(z) ≤ 2
√
m. If deg(z) >

√
m, we

prove by contradiction. Suppose |N(z,>r)| > 2
√
m, for

every vertex v ∈ N(z,>r), |N(v,>r)| ≥ |N(z,>r)| >
2
√
m since the vertex rank obeys degeneracy ordering. Then∑
v∈N(z,>r)

deg(v) ≥ deg(z) · |N(z,>r)| >
√
m · 2√m =

2m, contradict with
∑

v∈N(z,>r)
deg(v) ≤ 2m. So the time

cost is
∑

v∈V (|N(v,>r)|·deg(v)) ≤
∑

v∈V (2
√
m·deg(v)) =

2
√
m ·m = O(m1.5). (Time.B) For triplet counting, Line 13

costs O(n) time, as each vertex is visited once. Maintaining
f>[·] and f≥[·] costs O(m), because each edge is visited at
most three times (Line 14 and 18). So triplet counting costs
O(m) time. The time complexity of Algorithm 3 is O(m1.5).

Optimality. The time complexity and space complexity of
triangle counting are O(m1.5) and O(m), respectively [35].

Fig. 4. A Core Forest (Tree)

For any input metric Q requiring triangle counting, the worst-
case complexity of Algorithm 3 is optimal.

IV. FINDING THE BEST SINGLE K-CORE

In this section, we firstly review the forest hierarchy of
k-cores in Section IV-A. To find the best single k-core,
we propose the baseline algorithm in Section IV-B and the
improved algorithm in Section IV-C.

A. Hierarchy of k-Cores
According to the definition of k-core, the following prop-

erties hold for every integer k:

• (DISJOINTNESS) every k-core is disjoint from each other
in the same k-core set.

• (CONTAINMENT) a k-core is contained by exactly one
(k − 1)-core.

The hierarchy of k-cores can be represented by a set of trees
where each node is associated with a k-core. To illustrate the
structure, we first define the k-core tree node.

Definition 6 (k-Core Tree Node). Given a graph G, for each
k-core S, there is a uniquely associated k-core tree node NS

that contains the vertices in S with coreness k, i.e., S ∩Hk,
if S ∩Hk is not empty.

Note that the vertices in a k-core tree node are not certainly
connected, because the k-shell vertices in a k-core may be
separated by other vertices with higher coreness.

Definition 7 (Parent Tree Node). Given a graph G, a k1-core
S1 associated with NS1

, and a k2-core S2 associated with
NS2

, the k1-core tree node NS1
is the parent of the k2-core

tree node NS2
, if (i) k1 < k2; (ii) S2 ⊂ S1; and (iii) any

k′-core tree node with k1 < k′ < k2 is not the parent of NS2
.

Given a k-core S associated with NS , the tree node contains
vertices in the k-shell while leaving the rest in its descendants.
Suppose NS has children NC1

, · · ·NCc
, the original S can be

reconstructed recursively by the vertices in NS and
⋃c

i=1 Ci,
if every Ci has been reconstructed before.

Definition 8 (Core Forest). Given a graph G, the core forest
is constituted by all k-core tree nodes for every integer k from
0 to kmax, where every tree node is connected to its parent if
it exists.

Algorithm 4: the LCPS algorithm

Input : a graph G = (V,E), the coreness c(v) of every
vertex v ∈ V

Output : a forest of k-cores of G
X ← ∅;1
bin ← a list of (kmax + 1) empty arrays;2
for any u ∈ V \X do3

cur p ← the root of a new tree, k ← 0;4
bin[0] ← bin[0] ∪ {u};5
while there exists non-empty array in bin do6

r ← the largest r such that bin[r] is non-empty;7
pop v from bin[r];8
if v �∈ X then9

if k > r then adjust cur p so that k ← r;10
if c(v) > r then adjust cur p so that k ← c(v);11
insert v into the tree node pointed by cur p;12
X ← X ∪ {v};13
for each w ∈ N(v) \X do14

p ← min{c(w), c(v)};15
bin[p] ← bin[p] ∪ {w};16

return the forest17

The above forest organizes all k-cores into a hierarchy,
where each tree corresponds to a connected component of the
original graph. The core forest can be stored in O(n) space,
because each vertex exists in exactly one tree node and each
tree node has exactly one parent.

Example 6. Figure 4 shows the core forest of Figure 2 which
has only one tree. There are three tree nodes NS1 , NS2 , and
NS3

, associated with S1, S2, and S3, respectively. NS1
is

associated with the whole graph (a 2-core) while only the
vertices in the 2-shell are contained in NS1

. Although NS1
is

also a 1-core, no 1-core tree node would be built according
to our definition. We can reconstruct S1 from the vertices in
NS1

, S2, and S3. Also, we have |S1| = |NS1
|+|S2|+|S3|, and

m(S1) = m(NS1) +m(S2) +m(S3) + 3 (boundary edges).

Forest Construction. The state-of-the-art algorithm for con-
structing the forest of k-cores is proposed in [41], named
LCPS (Level Component Priority Search). The time complex-
ity of LCPS is O(m), if a bucket data structure is applied
in the implementation [48]. Since the LCPS is introduced at
a high-level, we provide the pseudo-code in Algorithm 4 for
LCPS to show more details.

To adapt LCPS for our need, three steps are required: (i)
run Algorithm 4; (ii) compress tree structure, i.e., if a tree
node stores no elements then we eliminate this node; and (iii)
store all remaining tree nodes into an array T and sort them
in descending order of the coreness of elements.

B. Baseline Algorithm
Given a graph G and a community scoring metric Q, a

baseline solution is to firstly conduct core decomposition,
and forest construction for fast retrieve of a k-core. Then, it
computes the score of every k-core according to Q, for every
integer k from 0 to kmax.

By visiting the forest of k-cores, it takes O(|V (Si)|) time
to retrieve the vertex set of every k-core Si. Let O(qi)

Algorithm 5: computing the best single k-core

Input : a graph G, a community scoring metric Q
Output : the best single k-core according to Q
metric ← [0, . . . , 0];1
pri_val ← [0, . . . , 0];2
compute the coreness of every vertex by core decomposition;3
order G by Algorithm 1;4
construct the forest T by Algorithm 4;5
for each i from 0 to T .size()− 1 do6

for each tv ∈ T .child do7
pri_val[i] ← pri_val[i] + pri_val[tv];8

for each v ∈ T .delta do9
pri_val[i] ← pri_val[i] + impact of v;10

metric[i] ←compute_metric(Q,pri_val[i]);11

return the k-core with highest score in metric12

be the time cost to compute the score of Si given V (Si),
Q and G. The time complexity of the baseline algorithm

is O
(∑kmax

k=0

∑
Si∈Ck

(qi + |V (Si)|)
)

. Although the baseline

runs in polynomial time, it is still costly to handle large graphs.

C. The Improved Algorithm

We apply the vertex ordering in Section III-B and the forest
structure in Section IV-A to design the improved algorithm.
The pseudo-code is shown in Algorithm 5. Array metric
stores the score of each k-core. Array pri_val stores the
primary values of each k-core. Here we use one variable
pri_val[i] to illustrate the computation of all the primary
values at tree node i. Array T stores the tree nodes. T [i] is
the ith element (a tree node) in T , where i is the id of T [i].

At Line 6, the algorithm processes each tree node in T
sequentially, as the nodes in T represent all the k-cores for
every integer k from kmax to 0. At Line 7-8, for each k-core,
its primary values are incrementally computed, based on the
values from the child nodes (Line 9-10) and the additional
values caused by current tree node (Line 9-11). Line 11
computes the score according to the metric Q and the primary
values. Line 12 returns the best single k-core.

Primary Values. In Line 8, the basic primary values in,
out, and num can be updated in three arrays, respectively,
like pri_val. To compute these primary values, Line 10
can be replaced by Line 7-9 of Algorithm 2 where in, out,
num are replaced by in[i],out[i], and num[i], respectively. To
compute the primary values triangle and triplet, we re-
place Line 10 by Line 7-22 of Algorithm 3 where triangle,
triplet become triangle[i] and triplet[i], respec-
tively.

Correctness. The correctness of Algorithm 5 is based on the
correct computation of primary values for every k-core (as
proved for Algorithm 2 and 3), and the correctness of forest
construction [41].

Complexity. (Space) The space complexity is dominated by
the size of graph, which is O(m). (Time.A) For the primary
values in, out, and num, the time complexity is the same to
Algorithm 2, which is O(n), because every vertex is visited
for exactly one time and each visit costs O(1) time. (Time.B)

TABLE III
STATISTICS OF DATASETS

Dataset n m davg kmax

Astro-Ph 18,772 198,110 21.1 56
Gowalla 196,591 950,327 9.7 51
DBLP 317,080 1,049,866 6.6 113
Youtube 1,134,890 2,987,624 5.3 51
As-Skitter 1,696,415 11,095,298 13.1 111
LiveJournal 3,997,962 34,681,189 17.4 360
Hollywood 1,069,126 56,306,653 105.3 2208
Orkut 3,072,441 117,185,083 76.3 253
Human-Jung 784,262 267,844,669 683.1 1200
FriendSter 65,608,366 1,806,067,135 55.1 304

For the primary values triangle and triplet, the time
complexity is the same to Algorithm 3 which is O(m1.5).

Optimality. (i) For the primary values in, out, and num,
since the time or space complexity of computing an ex-
isting community metric on G is at least O(m) [11], the
complexity of Algorithm 5 is optimal. (ii) For the primary
values triangle and triplet, the time complexity and
space complexity of triangle counting are O(m1.5) and O(m),
respectively [35]. For any input metric Q requiring triangle
counting, the worst-case complexity of Algorithm 5 is optimal.

V. EXPERIMENTAL EVALUATION

In this section, extensive experiments are conducted to
verify the effectiveness and the efficiency of the algorithms.

Datasets. In the experiments, we use 10 public real-world net-
works from different areas including collaboration networks,
Internet topology, brain networks, and social networks. Holly-
wood and Human-Jung are from http://networkrepository.com,
and the others are from http://snap.stanford.edu. The details
of the data are shown in Table III, ordered by the number
of edges, where davg is the average degree and kmax is the
largest vertex coreness.

Metrics. Our experiments adopt six representative community
scoring metrics introduced in Section II-C, i.e., average degree,
density, cut ratio, conductance, modularity, and clustering
coefficient. For conciseness, we abbreviate them to ad, den,
cr, con, mod, and cc, respectively.

Algorithms. For each of the 6 community metrics, we im-
plement both the baselines (Section III-A and IV-B) and
the improved algorithms (Algorithm 2, 3 and 5), for both
finding the best k-core set and finding the best single k-
core. The vertex ordering procedure (Algorithm 1) and the
forest construction (Algorithm 4) are included in the improved
algorithms.

Environment. We perform our experiments on a CentOS
Linux server (Release 7.5.1804) with Quad-Core Intel Xeon
CPU (E5-2630 v4 @ 2.20GHz), and 128G memory. All
the algorithms are implemented in C++. The source code is
compiled by GCC (7.3.0) under O3 optimization.

A. Community Quality by Different k

Scores of k-Core Sets. Figure 5 shows the scores of the k-
core set for different k, regarding different community metrics.

TABLE IV
BEST k FOR THE K-CORE (SET)

Algo AP G D Y AS LJ H O HJ FS

CS-ad 36 45 113 47 97 320 2208 229 1059 274
CS-den 56 51 113 51 111 360 2208 253 1200 304
CS-cr 1 1 1 1 1 3 1 3 1 44
CS-con 1 1 1 1 1 1 1 1 1 1
CS-mod 26 13 7 6 14 27 303 62 675 112
CS-cc 56 51 113 51 111 360 2208 253 1200 304

C-ad 36 45 64 47 90 194 2208 229 1058 274
C-den 56 8 113 5 3 89 2208 253 11 9
C-cr 17 1 1 1 2 1 1 1 5 1
C-con 17 1 1 1 2 1 1 1 5 61
C-mod 26 13 7 6 14 27 303 62 675 66
C-cc 56 8 113 5 3 89 2208 253 11 9

According to the trends of score on different k, using trivial
values for k will often find low-quality k-core sets. Choosing
a user-defined k value (e.g., 100) is not promising. Besides,
using a value based on dataset statistics (e.g., average degree
or kmax) does not necessarily produce a high-quality k-core
set. Very small k values are often preferred for the metric
of cut ratio or conductance, because they only measure the
interconnection among different k-cores. Thus, they may not
be used solely for finding the best k-core set.

Scores of k-Cores. Figure 6 shows the scores of all the
k-cores, where c in the x axis is the sequence id of a k-
core in the order that ranks all the k-cores by ascending
values of k with ties broken by ascending scores of the k-
cores. The y-axis is the community score of a k-core. The
figure presents a finer granularity of score distribution in core
decomposition on different metrics. To clearly show the result,
the trends are depicted by the average score of every 20
(resp. 5) consecutive k-cores in LiveJournal (resp. Orkut and
Friendster). The trends of score imply that many high-score
k-cores come from relatively low-score k-core sets. Similar
to finding the best k-core set, considering only the cross-
connections of k-cores (e.g., cut ratio and conductance) may
not be effective since extremely small k values are preferred
by these metrics. We may consider to use a combination of
different metrics to find the high-quality k-cores.

Best k Values. Table IV shows the best k identified by finding
the best k-core set and the best single k-core, respectively.
We use CS- to represent the result of the best k-core set,
e.g., CS-ad is the result by average degree. We use C- to
represent the result for the best k-core, e.g., C-cc is the result
by clustering coefficient. The largest k is recorded if multiple
values of k are the best on a metric.

The result shows different community metrics have different
preferences on the best value of k. For k-core set, ad, den and
cc prefer large values of k for high cohesiveness, while cr
and con give high scores when k is small for sparse cross-
connection. Some metrics choose an extreme value of k in
core decomposition, which may imply to use a combination
of these metrics. The mod metric chooses moderate values of
k considering both inner and outer connection of the k-cores.

B. Case Study on High Score k-Cores

By adopting different community scoring metrics, our algo-
rithms find different high-quality k-cores in DBLP dataset.

LiveJournal Orkut FriendSter

 0

 100

 200

 300

 400

 500

 600

 0 50 100 150 200 250 300 350

sc
or

e

k
(a) Average Degree

 0.9998
 0.99982
 0.99984
 0.99986
 0.99988
 0.9999

 0.99992
 0.99994
 0.99996
 0.99998

 1

 0 50 100 150 200 250 300 350

sc
or

e

k
(b) Cut Ratio

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 50 100 150 200 250 300 350

sc
or

e

k
(c) Conductance

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0 50 100 150 200 250 300 350

sc
or

e

k
(d) Modularity

Fig. 5. Scores of Every k-Core Set

 0

 100

 200

 300

 400

 500

 600

 0 300 600 900 1200 1500 1800

sc
or

e

c

(a) Average Degree

 0.99982
 0.99984
 0.99986
 0.99988

 0.9999
 0.99992
 0.99994
 0.99996
 0.99998

 1

 0 300 600 900 1200 1500 1800

sc
or

e

c

(b) Cut Ratio

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 300 600 900 1200 1500 1800

sc
or

e

c

(c) Conductance

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0 300 600 900 1200 1500 1800

sc
or

e

c

(d) Modularity

Fig. 6. Score of Every k-Core

TABLE V
COMMUNITY A (k = 17)

Vijay Gadepally William Arcand Andrew Prout
Charles Yee Michael Jones Albert Reuther
Anna Klein Matthew Hubbell Jeremy Kepner

Bill Bergeron David Bestor Julie Mullen
Antonio Rosa Chansup Byun Peter Michaleas

Lauren Milechin Siddharth Samsi Michael Houle

TABLE VI
COMMUNITY B (k = 9)

Danyang Zhao Xianyi Wang Congliang Liu
Cheng Liu Yueqiang Sun Qifei Du

Dongwei Wang Yuerong Cai Chunjun Wu
Weihua Bai Junming Xia Xiangguang Meng

TABLE VII
SCORES OF DETECTED COMMUNITIES

ID ad den cc cr con

A 17.0 1.0 1.0 0.999998 0.9871
B 10.67 0.9697 0.971 1.0 1.0

Table V shows community A (a 17-core) in which the
members are mainly from Lincoln Laboratory Supercomputing
Center, MIT. This community is identified as the best by the
score of average degree, internal density, and clustering coef-
ficient, respectively, as shown in Table VII. The members of
community A are highly collaborated in research, as reflected
by the co-authored papers: they have 6 co-authored papers
by all the members, 15 co-authored papers by at least 17
members, and 20 co-authored papers by at least 16 members.

Table VI shows community B (a 9-core) in which the
members are from National Space Science Center, Chinese
Academy of Sciences. Community B is relatively isolated
from the other authors, according to its highest cut ratio and
conductance in Table VII. The members in Community B are
also tightly connected: there are 8 co-authored papers by all the
members, and 13 co-authored papers by at least 11 members.

C. Runtime of Algorithms

Finding the Best k Value. In Figure 7, Baseline is the
baseline algorithm proposed in Section III-A which contains
score computation and core decomposition [7]. Optimal is
the improved algorithm (Algorithm 2 or 3) which contains
score computation, core decomposition, and index building,
i.e., the vertex ordering proposed in Section III-B.

Figure 7 shows that Optimal is significantly faster than
Baseline on all the datasets. For each dataset, index build-
ing and core decomposition only need to be executed by one
time, while score computation can be run for many times
given the different community metrics. The margins become
larger (1-4 orders of magnitude) if we do not count index
building time in Optimal. On Hollywood, Human-Jung, and
FriendSter, the baseline cannot finish within 105 seconds for
clustering coefficient. As analyzed in Section III-C, the time
complexity of score computation is determined by the number
of vertices for 5 metrics, which exactly matches the trends in
Figure 7. The runtimes on density and cur ratio are almost
same to that on average degree.

Finding the Best Single k-Core. In Figure 8, Baseline is
the baseline algorithm proposed in Section IV-B, Optimal
is the improved algorithm (Algorithm IV-C) where index
building contains the vertex ordering proposed in Section III-B
and the forest construction introduced in Section IV-A.

Figure 7 shows that Optimal still largely outperforms
Baseline. The trends of runtime are very similar to Figure 7,
except that the runtime of the algorithms becomes larger due
to the computation of k-core connectivity. On Hollywood,
Human-Jung, and FriendSter, the baseline cannot finish in
105 seconds for clustering coefficient. The runtime results on
density and cur ratio are almost same to the results on average
degree. Overall, Optimal outperforms Baseline by 1-4
orders of magnitude in runtime on different datasets.

+ index building + core decomposition
= baseline score computationBaseline

Optimal = our score computation
+ core decomposition

1ms
10ms

100ms
1s

10s
100s

103
104
105

AP G D Y AS LJ H O HJ FS
1ms

10ms
100ms

1s
10s

100s
103
104
105

AP G D Y AS LJ H O HJ FS

(a) Average Degree

1ms
10ms

100ms
1s

10s
100s

103
104
105

AP G D Y AS LJ H O HJ FS
1ms

10ms
100ms

1s
10s

100s
103
104
105

AP G D Y AS LJ H O HJ FS

(b) Conductance

1ms
10ms

100ms
1s

10s
100s

103
104
105

AP G D Y AS LJ H O HJ FS
1ms

10ms
100ms

1s
10s

100s
103
104
105

AP G D Y AS LJ H O HJ FS

(c) Modularity

1ms
10ms

100ms
1s

10s
100s

103
104
105

AP G D Y AS LJ H O HJ FS
1ms

10ms
100ms

1s
10s

100s
103
104
105

AP G D Y AS LJ H O HJ FS

(d) Clustering Coefficient

Fig. 7. Performance of Finding the Best k-Core Set

1ms
10ms

100ms
1s

10s
100s

103
104
105

AP G D Y AS LJ H O HJ FS
1ms

10ms
100ms

1s
10s

100s
103
104
105

AP G D Y AS LJ H O HJ FS

(a) Average Degree

1ms
10ms

100ms
1s

10s
100s

103
104
105

AP G D Y AS LJ H O HJ FS
1ms

10ms
100ms

1s
10s

100s
103
104
105

AP G D Y AS LJ H O HJ FS

(b) Conductance

1ms
10ms

100ms
1s

10s
100s

103
104
105

AP G D Y AS LJ H O HJ FS
1ms

10ms
100ms

1s
10s

100s
103
104
105

AP G D Y AS LJ H O HJ FS

(c) Modularity

1ms
10ms

100ms
1s

10s
100s

103
104
105

AP G D Y AS LJ H O HJ FS
1ms

10ms
100ms

1s
10s

100s
103
104
105

AP G D Y AS LJ H O HJ FS

(d) Clustering Coefficient

Fig. 8. Performance of Finding the Best Single k-Core

D. Application on Other Problems
In this experiment, we investigate the application of our

algorithm on 3 problems related to k-core, i.e., finding densest
subgraph, maximum clique and size-constrained k-core. Note
that the above problems are all NP-hard. In the following,
we show that our algorithm can serve as better approximate
solutions compared with the state-of-the-art, or produce useful
intermediate results. Let Opt-D denote our algorithm which
returns the best k-core regarding average degree (Algorithm
5). Let S∗ denote the output of Opt-D.

Densest Subgraph. The densest subgraph (DS) problem is to
find the subgraph with the largest average vertex degree [26].
Our Opt-D produces a 1

2 -approximate solution for DS prob-
lem, because the kmax-core is one of our candidate results,
which is a 1

2 -approximate solution [26]. We compare Opt-D
with the recent approximate solution named CoreApp [26]
which is the fastest algorithm for DS problem. As shown
in Table VIII, Opt-D outperforms CoreApp in both output
quality (average degree) and runtime on most datasets. Note
that the better values in Table VIII are marked in bold.

Maximum Clique. The maximum clique (MC) problem is
to find the largest subset of vertices such that every pair of
vertices in the subset is adjacent [12]. As shown in Table VIII,
it is likely that S∗ contains the maximum clique (6 out of 10
datasets), although S∗ is not large (the proportion of S∗ in the
whole vertex set is often within 1%). This finding can benefit
the algorithm design for MC problem.

Size-Constrained k-Core. Given an integer k, an integer h,
and a query vertex v, the query of size-constrained k-core
(SCK) is to find a k-core of size h which contains v. Based
on the average degree of every k-core computed by Opt-D,
the algorithm Opt-SC first selects the k′-core S′ that has the
highest average degree, where (i) k′ ≥ k (ii) S′ contains v;
and (iii) |V (S′)| ≥ h. Then, Opt-SC peels S′ to find more

TABLE VIII
PERFORMANCE OF Opt-D ON DENSEST SUBGRAPH & MAXIMUM CLIQUE

Dataset
CoreApp Opt-D Opt-D (output S∗)

davg time (s) davg time (s) MC ⊆ S∗ |S∗|/n
AP 56.035 0.11 58.923 0.02 � 7.87%
G 76 0.195 87.593 0.093 0.28%
D 113 0.233 113.13 0.138 � 0.04%
Y 86.066 0.594 91.1 0.498 � 0.18%
AS 150.018 1.145 178.801 1.374 0.03%
LJ 374.71 4.943 387.027 4.832 � 0.01%
H 2208 3.002 2208 3.635 � 0.21%
O 438.64 20.14 455.732 11.72 0.85%
HJ 2013.879 15.272 2114.915 14.457 � 1.15%
FS 513.852 1041.528 547.035 836.279 0.08%

S∗ is the output of Opt-D. davg is the average degree of the output.
MC ⊆ S∗ means the maximum clique is contained in S∗. |S∗|/n is

the vertex proportion of S∗ in the whole graph.

TABLE IX
PERFORMANCE OF Opt-SC ON SIZE-CONSTRAINED k-CORE (DBLP)

c(v) k = 10 k = 15 k = 20 k = 30 k = 40
30 96.45% 88.31% 76.21% 20.97% /
43 97.46% 91.41% 82.10% 37.87% 6.69%
51 99.12% 96.75% 92.64% 49.81% 30.77%
64 98.61% 95.15% 89.62% 61.88% 57.86%

113 98.61% 95.15% 89.62% 61.88% 57.86%

Given a random query point v with coreness c(v), the percentage that
Opt-SC returns a k-core with at most 5% size deviation to h.

results (k-cores) until |V (S′)| ≤ h: in each step of the peeling,
it removes the vertex with the lowest degree (skip v) and the
vertices with degree less than k in S′.

Table IX shows the performance of Opt-SC on DBLP. We
say Opt-SC hits a query if the returned k-core contains v and
has at most 5% size deviation to h. Opt-SC is very likely
to hit the query when c(v) is larger than k. Note that some
coreness values do not exist, i.e., no vertex has such coreness.
As the time complexity of Opt-SC is linear to graph size, it
can benefit the algorithm design for SCK problem.

VI. DISCUSSIONS AND FUTURE WORK

In this section, we explore several future extensions of our
proposed models and algorithms.

A. Other Community Metrics
There are various existing community scoring metrics and

many potential new metrics by combining the existing ones or
adopting new structure properties. Our algorithms can handle
most community metrics based on the studied 5 primary values
in Section II-C. A survey of community metrics [11] organizes
and reviews many existing metrics where the majority (suitable
for core decomposition) are based on the above 5 primary
values. The exceptions include some metrics based on higher-
order motifs [5], some metrics for overlapped communities,
etc. They are interesting for further study.

B. Other Hierarchical Decompositions
If a cohesive subgraph model with input k has the con-

tainment property, i.e., the (k + 1)-subgraph is always a
subgraph of the k-subgraph, our algorithm for finding the
best k may be applied to find the best k. When the forest
structure of a hierarchical decomposition is similar to that of
core decomposition in Section IV-A, our algorithm for finding
the best single k-core is also applicable.

For instance, our algorithms can shed light on the solutions
on the decomposition of k-truss. To find the best k-truss set,
we may rank the incident edges of every vertex by their
truss numbers and record some position tags, to facilitate the
incremental score computation. Given the score of (k + 1)-
truss set S, to compute the score for k-truss set, we can
visit the vertices in k-truss set but not in S, and additional
vertices incident to edges with truss number k. The solution
for computing the best single k-truss can be derived similarly,
while designing an optimal solution is still challenging.

VII. RELATED WORK

Diverse models of cohesive subgraph are proposed to
accommodate different scenarios, for example, clique [17],
quasi-clique [46], k-core [7], [33], [49], k-truss [19], [31],
[54], k-plex [56], and k-ecc [13], [66]. Some cohesive sub-
graph models decompose a graph into hierarchical structure,
e.g., core decomposition [42], [59], truss decomposition [50],
[54], [65], and ecc decomposition [13], [62]. Core decom-
position is one of the most well-studied models, due to
its effectiveness in various applications including community
discovery [15], [16], [28], [37], [38], influential spreader
identification [24], [34], [39], [40], network analysis [4], [21],
[30], [51], anomaly detection [51], evaluating contagion power
of vertices [34], [53], and graph visualization [3], [20], [65].

An O(m) time in-memory algorithm for core decomposition
is proposed in [7]. The construction of core forest can also be
computed in O(m) time [41]. The core decomposition under
distributed configuration is introduced in [42]. An I/O efficient
algorithm for core decomposition is proposed in [59]. Various
variants of k-core are explored, including (k, r)-core [63],
diversified coherent k-core [67], and skyline k-core [37].

The model of k-core is extended to weighted graphs where
each edge has its weight and each vertex has its weighted

degree, as introduced in [23], [27], [58]. The weighted core
decomposition can be applied to evaluate the cooperation in
k-core communities [29] and identify influential spreaders [1].
The techniques for k-core computation and decomposition
cannot be applied to solve our problem, because the prior
works only aim to find all the k-core structures and do not
compute the score of any k-core. Our algorithm may shed light
on finding the best k-core on weighted graphs if we apply the
weighted community scores. For the problem of extracting
a dense subgraph, there is a solution that aims to find the

subgraph S such that fα(S) = m(S)−α
(
n(S)
2

)
is maximized,

while the subgraph S is not guaranteed to be a k-core, and
the techniques cannot be used to solve our problems [52].

Metrics for community evaluation are surveyed in [11], [61]
such as modularity [9], [44] and clustering coefficient [32],
[47]. Community scoring metrics can be used to effectively
compare the communities produced by different algorithms,
and formalize the notion of network communities [36]. Dif-
ferent communities can be found by the optimization guided
by different community metrics, e.g., [2], [14], [18], [60]. To
the best of our knowledge, this paper is the first attempt to
apply community scoring metrics to compute the quality of
k-cores and other cohesive subgraph models such as k-truss.

VIII. CONCLUSION

In this paper, we study the problems of computing the best
k-core set and the best single k-core with respect to a commu-
nity scoring metric. Since there are various metrics considering
different standards, we focus on 5 common primary values
to handle different metrics. Benefitting from a light-weight
vertex ordering procedure with O(m) time complexity, we
propose time and space optimal algorithms for the studied
problems. We conduct extensive experiments on 10 real-world
graphs with size up to billion-scale, where our algorithms not
only significantly outperform the baselines in runtime but also
provide profound insights for the related problems.

ACKNOWLEDGMENTS

Xuemin Lin is supported by 2018YFB1003504, NSFC6123
2006, ARC DP180103096 and DP170101628. Wenjie Zhang
is supported by ARC DP180103096. Ying Zhang is supported
by ARC DP180103096 and FT170100128.

REFERENCES

[1] M. A. Al-garadi, K. D. Varathan, and S. D. Ravana. Identification of
influential spreaders in online social networks using interaction weighted
k-core decomposition method. Physica A, 468:278–288, 2017.

[2] D. Aloise, G. Caporossi, P. Hansen, L. Liberti, S. Perron, and M. Ruiz.
Modularity maximization in networks by variable neighborhood search.
In Graph Partitioning and Graph Clustering, pages 113–128, 2012.

[3] J. I. Alvarez-Hamelin, L. Dall’Asta, A. Barrat, and A. Vespignani.
Large scale networks fingerprinting and visualization using the k-core
decomposition. In NIPS, pages 41–50, 2005.

[4] J. I. Alvarez-Hamelin, L. Dall’Asta, A. Barrat, and A. Vespignani. K-
core decomposition of internet graphs: hierarchies, self-similarity and
measurement biases. NHM, 3(2):371–393, 2008.

[5] A. Arenas, A. Fernandez, S. Fortunato, and S. Gomez. Motif-based
communities in complex networks. Journal of Physics A: Mathematical
and Theoretical, 41(22):224001, 2008.

[6] G. D. Bader and C. W. V. Hogue. An automated method for finding
molecular complexes in large protein interaction networks. BMC
Bioinformatics, 4:2, 2003.

[7] V. Batagelj and M. Zaversnik. An o(m) algorithm for cores decompo-
sition of networks. CoRR, cs.DS/0310049, 2003.

[8] M. Bola and B. A. Sabel. Dynamic reorganization of brain functional
networks during cognition. Neuroimage, 114:398–413, 2015.

[9] U. Brandes, D. Delling, M. Gaertler, R. Görke, M. Hoefer, Z. Nikoloski,
and D. Wagner. On modularity clustering. TKDE, 20(2):172–188, 2008.

[10] S. Carmi, S. Havlin, S. Kirkpatrick, Y. Shavitt, and E. Shir. A model of
internet topology using k-shell decomposition. PNAS, 104(27):11150–
11154, 2007.

[11] T. Chakraborty, A. Dalmia, A. Mukherjee, and N. Ganguly. Metrics for
community analysis: A survey. ACM Comput. Surv., 50(4):54:1–54:37,
2017.

[12] L. Chang. Efficient maximum clique computation over large sparse
graphs. In KDD, pages 529–538, 2019.

[13] L. Chang, J. X. Yu, L. Qin, X. Lin, C. Liu, and W. Liang. Efficiently
computing k-edge connected components via graph decomposition. In
SIGMOD, pages 205–216, 2013.

[14] C. Chen, R. Peng, L. Ying, and H. Tong. Network connectivity
optimization: Fundamental limits and effective algorithms. In KDD,
pages 1167–1176, 2018.

[15] L. Chen, C. Liu, K. Liao, J. Li, and R. Zhou. Contextual community
search over large social networks. In ICDE, pages 88–99, 2019.

[16] L. Chen, C. Liu, R. Zhou, J. Li, X. Yang, and B. Wang. Maximum
co-located community search in large scale social networks. PVLDB,
11(10):1233–1246, 2018.

[17] J. Cheng, Y. Ke, A. W. Fu, J. X. Yu, and L. Zhu. Finding maximal
cliques in massive networks. ACM Trans. Database Syst., 36(4):21:1–
21:34, 2011.

[18] A. Clauset. Finding local community structure in networks. Physical
review E, 72(2):026132, 2005.

[19] J. Cohen. Trusses: Cohesive subgraphs for social network analysis.
National Security Agency Technical Report, 16:3–1, 2008.

[20] P. Colomer-de-Simon, M. Á. Serrano, M. G. Beiró, J. I. Alvarez-
Hamelin, and M. Boguñá. Deciphering the global organization of
clustering in real complex networks. CoRR, abs/1306.0112, 2013.

[21] M. Daianu, N. Jahanshad, T. M. Nir, A. W. Toga, C. R. J. Jr., M. W.
Weiner, and P. M. Thompson. Breakdown of brain connectivity between
normal aging and alzheimer’s disease: A structural k-core network
analysis. Brain Connectivity, 3(4):407–422, 2013.

[22] Y. Dourisboure, F. Geraci, and M. Pellegrini. Extraction and classifica-
tion of dense implicit communities in the web graph. TWEB, 3(2):7:1–
7:36, 2009.

[23] M. Eidsaa and E. Almaas. S-core network decomposition: A general-
ization of k-core analysis to weighted networks. Physical Review E,
88(6):062819, 2013.

[24] S. Elsharkawy, G. Hassan, T. Nabhan, and M. Roushdy. Effectiveness
of the k-core nodes as seeds for influence maximisation in dynamic
cascades. International Journal of Computers, 2, 2017.

[25] Y. Fang, R. Cheng, X. Li, S. Luo, and J. Hu. Effective community
search over large spatial graphs. PVLDB, 10(6):709–720, 2017.

[26] Y. Fang, K. Yu, R. Cheng, L. V. S. Lakshmanan, and X. Lin. Efficient
algorithms for densest subgraph discovery. PVLDB, 12(11):1719–1732,
2019.

[27] A. Garas, F. Schweitzer, and S. Havlin. A k-shell decomposition method
for weighted networks. New Journal of Physics, 14(8):083030, 2012.

[28] C. Giatsidis, F. D. Malliaros, D. M. Thilikos, and M. Vazirgiannis.
Corecluster: A degeneracy based graph clustering framework. In AAAI,
pages 44–50, 2014.

[29] C. Giatsidis, D. M. Thilikos, and M. Vazirgiannis. Evaluating coop-
eration in communities with the k-core structure. In ASONAM, pages
87–93, 2011.

[30] L. Hébert-Dufresne, A. Allard, J.-G. Young, and L. J. Dubé. Percolation
on random networks with arbitrary k-core structure. Physical Review E,
88(6):062820, 2013.

[31] X. Huang, H. Cheng, L. Qin, W. Tian, and J. X. Yu. Querying k-truss
community in large and dynamic graphs. In SIGMOD, pages 1311–
1322, 2014.

[32] L. Katzir and S. J. Hardiman. Estimating clustering coefficients and size
of social networks via random walk. TWEB, 9(4):19:1–19:20, 2015.

[33] W. Khaouid, M. Barsky, S. Venkatesh, and A. Thomo. K-core decom-
position of large networks on a single PC. PVLDB, 9(1):13–23, 2015.

[34] M. Kitsak, L. K. Gallos, S. Havlin, F. Liljeros, L. Muchnik, H. E.
Stanley, and H. A. Makse. Identification of influential spreaders in
complex networks. Nature physics, 6(11):888, 2010.

[35] M. Latapy. Main-memory triangle computations for very large (sparse
(power-law)) graphs. Theor. Comput. Sci., 407(1-3):458–473, 2008.

[36] J. Leskovec, K. J. Lang, and M. W. Mahoney. Empirical comparison of
algorithms for network community detection. In WWW, pages 631–640,
2010.

[37] R. Li, L. Qin, F. Ye, J. X. Yu, X. Xiao, N. Xiao, and Z. Zheng. Skyline
community search in multi-valued networks. In SIGMOD, pages 457–
472, 2018.

[38] R. Li, J. Su, L. Qin, J. X. Yu, and Q. Dai. Persistent community search
in temporal networks. In ICDE, pages 797–808, 2018.

[39] J.-H. Lin, Q. Guo, W.-Z. Dong, L.-Y. Tang, and J.-G. Liu. Identifying
the node spreading influence with largest k-core values. Physics Letters
A, 378(45):3279–3284, 2014.

[40] F. D. Malliaros, M.-E. G. Rossi, and M. Vazirgiannis. Locating
influential nodes in complex networks. Scientific reports, 6:19307, 2016.

[41] D. W. Matula and L. L. Beck. Smallest-last ordering and clustering and
graph coloring algorithms. J. ACM, 30(3):417–427, 1983.

[42] A. Montresor, F. D. Pellegrini, and D. Miorandi. Distributed k-core
decomposition. IEEE TPDS, 24(2):288–300, 2013.

[43] F. Morone, G. Del Ferraro, and H. A. Makse. The k-core as a predictor of
structural collapse in mutualistic ecosystems. Nature Physics, 15(1):95,
2019.

[44] M. E. Newman. Modularity and community structure in networks.
PNAS, 103(23):8577–8582, 2006.

[45] M. E. Newman and M. Girvan. Finding and evaluating community
structure in networks. Physical review E, 69(2):026113, 2004.

[46] J. Pei, D. Jiang, and A. Zhang. On mining cross-graph quasi-cliques.
In KDD, pages 228–238, 2005.

[47] J. Saramäki, M. Kivelä, J.-P. Onnela, K. Kaski, and J. Kertesz. Gen-
eralizations of the clustering coefficient to weighted complex networks.
Physical Review E, 75(2):027105, 2007.

[48] A. E. Sariyüce and A. Pinar. Fast hierarchy construction for dense
subgraphs. PVLDB, 10(3):97–108, 2016.

[49] S. B. Seidman. Network structure and minimum degree. Social networks,
5(3):269–287, 1983.

[50] Y. Shao, L. Chen, and B. Cui. Efficient cohesive subgraphs detection
in parallel. In SIGMOD, pages 613–624, 2014.

[51] K. Shin, T. Eliassi-Rad, and C. Faloutsos. Corescope: Graph mining
using k-core analysis - patterns, anomalies and algorithms. In ICDM,
pages 469–478, 2016.

[52] C. E. Tsourakakis, F. Bonchi, A. Gionis, F. Gullo, and M. A. Tsiarli.
Denser than the densest subgraph: extracting optimal quasi-cliques with
quality guarantees. In KDD, pages 104–112, 2013.

[53] J. Ugander, L. Backstrom, C. Marlow, and J. Kleinberg. Structural
diversity in social contagion. PNAS, 109(16):5962–5966, 2012.

[54] J. Wang and J. Cheng. Truss decomposition in massive networks.
PVLDB, 5(9):812–823, 2012.

[55] K. Wang, X. Cao, X. Lin, W. Zhang, and L. Qin. Efficient computing
of radius-bounded k-cores. In ICDE, pages 233–244, 2018.

[56] Y. Wang, X. Jian, Z. Yang, and J. Li. Query optimal k-plex based
community in graphs. DSE, 2(4):257–273, 2017.

[57] D. J. Watts and S. H. Strogatz. Collective dynamics of ‘small-
world’networks. Nature, 393(6684):440, 1998.

[58] B. Wei, J. Liu, D. Wei, C. Gao, and Y. Deng. Weighted k-shell
decomposition for complex networks based on potential edge weights.
Physica A, 420:277–283, 2015.

[59] D. Wen, L. Qin, Y. Zhang, X. Lin, and J. X. Yu. I/O efficient core graph
decomposition at web scale. In ICDE, pages 133–144, 2016.

[60] Y. Wu, R. Jin, J. Li, and X. Zhang. Robust local community detection:
On free rider effect and its elimination. PVLDB, 8(7):798–809, 2015.

[61] J. Yang and J. Leskovec. Defining and evaluating network communities
based on ground-truth. Knowl. Inf. Syst., 42(1):181–213, 2015.

[62] L. Yuan, L. Qin, X. Lin, L. Chang, and W. Zhang. I/O efficient ECC
graph decomposition via graph reduction. VLDB J., 26(2):275–300,
2017.

[63] F. Zhang, Y. Zhang, L. Qin, W. Zhang, and X. Lin. When engagement
meets similarity: Efficient (k, r)-core computation on social networks.
PVLDB, 10(10):998–1009, 2017.

[64] H. Zhang, H. Zhao, W. Cai, J. Liu, and W. Zhou. Using the k-core
decomposition to analyze the static structure of large-scale software
systems. The Journal of Supercomputing, 53(2):352–369, 2010.

[65] F. Zhao and A. K. H. Tung. Large scale cohesive subgraphs discovery
for social network visual analysis. PVLDB, 6(2):85–96, 2012.

[66] R. Zhou, C. Liu, J. X. Yu, W. Liang, B. Chen, and J. Li. Finding
maximal k-edge-connected subgraphs from a large graph. In EDBT,
pages 480–491, 2012.

[67] R. Zhu, Z. Zou, and J. Li. Diversified coherent core search on multi-
layer graphs. In ICDE, pages 701–712, 2018.

